Превращение энергии: закон сохранения энергии. Превращение одного вида механической энергии в другой

Базанова Наталья Геннадьевна,

учитель физики, МБОУ СОШ № 85, г. Хабаровск.

Урок. Физика. 7 класс

Тема: Превращение одного вида механической энергии в другой.

Цели:

Образовательная: познакомиться на примерах с превращением одного вида механиче-ской энергии в другой, познакомиться с законом сохранения механической энергии, законом сохранения энергии в природе, применением закона сохранения энергии.

Развивать внимание, память, мышление, любознательность, умение использовать ре-сурсы интернета.

Воспитывать чувство ответственности за сохранение окружающей среды, положитель-ную мотивацию к учению.

Тип урока: изучение нового материала.

План урока:

    Организационный момент.

III. Закрепление материала.

IV. Подведение итогов.

V. Домашнее задание.

Ход урока:

I. Организационный момент.

На прошлом уроке мы изучили отдельно потенциальную энергию и кинетическую энергию и теперь сначала вспомним на опыте, который проделали в прошлый раз, что такое потенциальная и кинетическая энергия, а потом посмотрим, как они взаимосвязаны – превращаются один вид механической энергии в другой. Одновременно с опытом будем за-полнять ответы на вопросы в рабочей тетради.

II. Изложение нового материала.

1. Примеры превращения двух видов механической энергии, закон сохранения энергии.

1). Движение тела по наклонной плоскости.

Предлагается пронаблюдать превращение одного вида механической энергии в другой на примере движения металлического цилиндра по наклонной плоскости.

На подставку штатива положили пластмассовую линейку, чтобы получить наклонную плоскость. У основания наклонной плоскости, на небольшом расстоянии положили брусок. На вершину наклонной плоскости положили цилиндр и отпустили его. Цилиндр, скатывается с наклонной плоскости, ударяется о брусок и перемещает его.

Предлагается ответить на вопросы в Рабочей тетради:

Какой энергией обладает цилиндр, поднятый на высоту наклонной плоскости относи-тельно стола? (Потенциальной.)

Потенциальная энергия цилиндра при движении по наклонной плоскости превраща-ется в (кинетическую) энергию.

У основания наклонной плоскости относительно стола цилиндр обладает (нулевой по-тенциальной и максимальной кинетической) энергией.

За счет чего цилиндр приобретает потенциальную энергию при подъеме на вершину наклонной плоскости? (E п =mgh. За счет поднятия над поверхностью стола на высоту наклонной плоскости h.)

При движении цилиндра по наклонной плоскости вниз потенциальная энергия умень-шается. Что при этом происходит? (Высота цилиндра над поверхностью стола уменьша-ется и у основания наклонной плоскости равна 0. Потенциальная энергия цилиндра рав-на 0.)

Что происходит с кинетической энергией цилиндра при его движении вниз по наклон-ной плоскости? (E к =mv 2 /2. При движении вниз по наклонной плоскости скорость цилин-дра увеличивается и его кинетическая энергия увеличивается. У основания наклонной плоскости скорость максимальная и кинетическая энергия максимальная.)

Сделайте вывод о превращении механической энергии цилиндра при его движении по наклонной плоскости. (Произошло постепенное преобразование потенциальной энергии в кинетическую энергию. У основания наклонной плоскости вся потенциальная энергия перешла в кинетическую энергию.)

В идеале, если бы не было потерь энергии на преодоление силы трения, сопротивление воздуха, потенциальная энергия цилиндра до начала движения и кинетическая энергия в конце были бы равны E п =E к. . В промежуточных точках полная механическая энергия цилиндра остается постоянной E=E п +E к. В этом состоит закон превращения одного вида механической энергии в другой вид, закон сохранения механической энергии.

2). Колебание маятника.

Предлагается пронаблюдать опыт из Работы дома в Рабочей тетради - превращение по-тенциальной энергии в кинетическую (и обратно) при колебании маятника. Показ компью-терной анимации на экране.

Подвесили шарик на нити к опоре, получится маятник. Если шарик отклонить в сторо-ну, поднять на некоторую высоту и отпустить, то шарик качнется в другую сторону, пройдет серединную точку и отклонится в другую сторону. Маятник совершает колебания.

Нужно ответить на вопросы:

Какие превращения энергии происходят при колебаниях маятника? (При движении вниз под действием силы тяжести потенциальная энергия шарика уменьшается, кинетическая энергия возрастает, потенциальная энергия превращается в кинетическую.)

В каком положении маятник имеет наибольшую потенциальную энергию? (В верхней крайней точке, когда высота максимальная.)

Наименьшую потенциальную энергию? (При прохождении нижней, серединной точки, когда высота минимальная.)

(На диаграмме компьютерной анимации видно преобразование потенциальной энергии в кинетическую и обратно.)

В каком положении маятник имеет наибольшую кинетическую энергию? (В нижней, серединной точке. когда скорость максимальная.)

Наименьшую кинетическую энергию? (В верхней крайней точке, когда скорость ну-левая.)

Сделайте вывод о превращении и сохранении энергии при колебательном движении. (В нижней точке шарик обладает таким запасом кинетической энергии, что может опять качнуться почти до прежней высоты. При движении вверх, кинетическая энергия превращается в потенциальную. Поднявшись вверх, шарик вновь качнется вниз, а затем снова вверх. Периодически два вида механической энергии переходят друг в друга. Общая механическая энергия маятника сохраняется.)

Показ видеоролика о работе Маятника Максвелла, описанного в учебнике. Прибор де-монстрирует явление превращения потенциальной и кинетической энергии. Видеоролик опыта взят с сайта «Классная физика» http://class-fizika.narod.ru.

4). Удар резинового мячика об пол.

В учебнике приведен еще один опыт - пример превращения потенциальной энергии в кинетическую для шарика, который бросают с какой-то высоты над уровнем стола. Показ фрагмента видео урока http://class-fizika.narod.ru.

Эти опыты демонстрируют закон сохранения механической энергии: «Энергия при механических процессах превращается из одного вида в другой и сохраняется неизменной для замкнутой системы тел».

Замкнутой системой называют тела, которые условно считают изолированными от других воздействий. Если еще учесть другие посторонние воздействия – силу трения и др., то получится более сложная система. Поэтому условно ограничивают тела, которые рассматривают и называют эту систему тел замкнутой.

Вернемся к нашему опыту движения металлического цилиндра по наклонной плоско-сти. Цилиндр, скатившись по наклонной плоскости, ударяется о брусок и перемещает его. Энергия может передаваться от одного тела к другому. Закон превращения одного вида ме-ханической энергии в другой касается не только одного движущегося тела, но и нескольких взаимодействующих тел.

С таким превращением энергии мы встречаемся не только в механических процессах, но и более широко во всех явлениях природы. Механическая энергия может переходить и в другие виды энергии – тепловую, электрическую, причем полная энергия замкнутой системы остается постоянной. В этом состоит более общий закон сохранения энергии в природе: «Полная энергия замкнутой системы остается постоянной при всех изменениях, происходящих внутри этой системы». Закон сохранения энергии является фундаментальным законом природы: «Энергия не создается и не уничтожается, а только переходит от одного тела к другому, превращается из одного вида в другой» . Такое превращение различных видов энергии в природе используется в технике.

2. «Энергия движущейся воды и ветра» - сообщение ученика с презентацией по до-полнительному материалу к параграфу учебника «Это любопытно…» и интернета. О гидравлических и ветряных двигателях, об использовании экологически чистых источников энергии, создании экологически чистых двигателей.

Показ моделей ветряного генератора и гидрогенератора.

3. Решение задачи на превращение энергии.

«Мяч массой 5 кг свободно падает на землю с высоты 5 м. Определите кинетическую энергию и скорость мяча в момент удара о землю.»

Объяснение решения задачи: Для нахождения кинетической энергии есть масса тела, а скорости нет. Используем закон сохранения механической энергии. Когда мяч находился на высоте h над землей он обладал потенциальной энергией и вся потенциальная энергия при падении мяча перешла в кинетическую. E к =E п =mgh=5х10х5=250 Дж. Скорость находим из формулы кинетической энергии E к =mv 2 /2, v 2 =2E к /m, v= = =100 Дж.

На следующем уроке будем мы решать задачи на примеры тел, обладающих одновременно кинетической и потенциальной энергией.

Закон сохранения механической энергии касается проблемы создания вечного двигате-ля.

4. «Механический вечный двигатель» - сообщение учеников с презентацией по до-полнительному материалу. О многочисленных безуспешных попытках создания механических устройств, которые после запуска могли бы совершать работу неограниченно долгое время. Машина, действующая без притока энергии извне, по истечении некоторого времени полностью израсходует имевшийся в ней запас на преодоление сил сопротивления и остановится. Согласно закону сохранения энергии, создание вечного двигателя невозможно.

Показ модели механического вечного двигателя.

Показ устройства модели механического вечного двигателя и объяснение, почему дви-гатель не работает. Показ поддельных компьютерных анимаций, видеосъемки из интернета, демонстрирующих работу вечного двигателя.

III. Закрепление материала.

Тест (выбрать один из вариантов ответов):

1. Камень падает на землю. Какие превращения энергии происходят?

Кинетическая энергия камня превращается в его потенциальную энергию,

Потенциальная энергия камня превращается в его кинетическую энергию,

2. Мальчик завел ключиком игрушечный автомобиль. Пружина стала обладать механи-ческой энергией. Какой переход энергии происходит при движении автомобиля?

Никаких превращений энергии не происходит.

3. Какие превращения энергии происходят при движении маятника из точки В в точку А?

Кинетическая энергия превращается в потенциальную энергию,

Потенциальная энергия камня превращается в кинетическую энергию,

Никаких превращений энергии не происходит.

4. Теннисный шарик падает на стальную плиту и подскакивает на такую же высоту. На каком участке траектории его потенциальная энергия увеличивается, а кинетическая умень-шается?

При движении от верхней точки траектории вниз,

При движении от нижней точки траектории вверх,

На любом участке траектории,

Такого участка траектории не имеется.

(Сайт «Классная физика» http://class-fizika.narod.ru)

IV. Подведение итогов.

С помощью различных опытов мы познакомились с превращением и сохранением ме-ханической энергии. Познакомились с законом превращения и сохранения энергии в приро-де. Применением закона сохранения энергии в технике, для решения задач. На следующем уроке мы продолжим решать задачи на превращение и сохранение энергии.

V. Домашнее задание: п. 64, упр. 33 № 1-3, задания в рабочей тетради.

Литература:

1. Физика. 7 класс: учебник для общеобразовательных учреждений / А.В. Перышкин. - М.: Дрофа, 2008.

2. УМК. Рабочая тетрадь по физике: 7 класс: к учебнику А.В. Перышкина «Физика. 7 класс» / Р.Д. Минькова, В.В. Иванова. - М.: Издательство «Экзамен», 2008.

4. УМК. Тесты по физике: 7 класс: к учебнику А.В. Перышкина «Физика. 7 класс» / А.В. Чеботарёва. - М.: Издательство «Экзамен», 2008.

5. Сборник задач по физике для 7-9 классов / В.И. Лукашик, Е.В. Иванова. - М.: Просвещение, 2008.

6. Тематическое и поурочное планирование по физике: 7-й кл.: к учебнику А.В. Перышкина «Физика. 7 класс» / Р.Д. Минькова, Е.Н. Панаиоти. - М.: Издательство «Экзамен», 2008.

652. Камень бросили вертикально вверх. Происходят ли при этом превращения энергии? Какие именно?
Кинетическая энергия уменьшается, потенциальная увеличивается.

653. Теннисный мячик, ударившись об асфальт, несколько раз подпрыгивает вверх, но при каждом подпрыгивании он поднимается на меньшую высоту. Почему?
Часть энергии тратится на преодоление трения о воздух и выделяется в виде тепла при ударе о землю.

654. За счет какой энергии:
а) работают часы с механическим заводом;
б) вращаются крылья ветряной мельницы;
в) текут реки?

а) потенциальной;
б) кинетической;
в) потенциальной.

655. Какие превращения механической энергии лыжника происходят при его спуске с ледяной горы?
Потенциальная энергия переходит в кинетическую к концу спуска.

656. На гидроэлектростанции получают электроэнергию с помощью воды, вращающей турбины. При этом обычно реку перегораживают плотиной. Для чего это делают?
Чтобы создать перепад высот и потенциальную энергию воды переводить в кинетическую.

657. Как меняется потенциальная и кинетическая энергии искусственного спутника Земли (рис. 82) в разных точках (a, b, c, d) его орбиты. В какой точке траектории его потенциальная энергия относительно Земли максимальная? Минимальная?

В точке d потенциальная энергия максимальна, в точке b-минимальна.

658. Яблоко массой 200 г свободно падает с ветки яблони на высоте 2 м на землю. Какой будет кинетическая энергия яблока перед ударом о землю? Чему будет равна его скорость перед ударом?

659. На какой высоте кинетическая энергия мяча будет равна потенциальной, если он брошен вертикально вверх с начальной скоростью 19,6 м/с?

660. Грузик на невесомой нити длиной 20 см отвели в горизонтальное положение и отпустили (рис. 83). Найдите максимальную скорость грузика.


661. Положите на фанеру монету в 5 копеек и, прижимая ее средним пальцем к фанере, трите с большой скоростью, считая до 50. На каком числе счета вы не сможете продолжать эту работу, так как монета обжигает палец?
Эксперимент.

662. Сколько получится теплоты, если работа 8,54 кДж целиком перейдет в тепло?
Все 8,54 кДж.

663. Сколько механической энергии можно получить, если 20,9 кДж целиком обратятся в механическую работу?
Все 20,9 кДж.

664. На сколько нагрелась бы вода, падая с Днепровской плотины (высота 37,5 м), если бы вся кинетическая энергия этой воды перешла в теплоту?

В примере, разобранном в предыдущем параграфе, выяснилось, что приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость, т. е. кинетическую энергию, но при этом пружина будет распрямляться, и ее потенциальная энергия будет соответственно уменьшаться; сумма потенциальной и кинетической энергий останется постоянной. Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной.

Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остается неизменным. Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии.

Рис. 168. Отразившись от стальной плиты, стальной шарик подскакивает снова на ту же высоту, с которой он был брошен.

Проиллюстрируем закон сохранения энергии на следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об нее, подскакивает почти на ту же высоту, с которой упал (рис. 168). Во время движения шарика происходит целый ряд превращений энергии. При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться. Кинетическая энергия превращается в потенциальную энергию упругой деформации шарика и плиты, причем этот процесс продолжается до тех пор, пока вся его кинетическая энергия не перейдет в потенциальную энергию упругой деформации. Затем под действием сил упругости деформированной плиты шарик приобретает скорость, направленную вверх: энергия упругой деформации плиты и шарика превращается в кинетическую энергию шарика. При дальнейшем движении вверх скорость шарика под действием силы тяжести уменьшается, и кинетическая энергия превращается в потенциальную энергию тяготения. В наивысшей точке шарик обладает снова только потенциальной энергией тяготения.

Поскольку можно считать, что шарик поднялся на ту же высоту, с которой он начал падать, потенциальная энергия шарика в начале и в конце описанного процесса одна и та же. Более того, в любой момент времени при всех превращениях энергии сумма потенциальной энергии тяготения, потенциальной энергии упругой деформации и кинетической энергии все время остается одной и той же. Для процесса превращения потенциальной энергии, обусловленной силой тяжести, в кинетическую и обратно при падении и подъеме шарика это было показано простым расчетом в § 101. Можно было бы убедиться, что и при превращении кинетической энергии в потенциальную энергию упругой деформации плиты и шарика и затем при обратном процессе превращения этой энергии в кинетическую энергию отскакивающего шарика сумма потенциальной энергии тяготения, энергии упругой деформации и кинетической энергии также остается неизменной, т. е. закон сохранения механической энергии выполнен.

Теперь мы можем объяснить, почему нарушался закон сохранения работы в простой машине, которая деформировалась при передаче работы (§ 95): дело в том, что работа, затраченная на одном конце машины, частично или полностью затрачивалась на деформацию самой простой машины (рычага, веревки и т. д.), создавая в ней некоторую потенциальную энергию деформации, и лишь остаток работы передавался на другой конец машины. В сумме же переданная работа вместе с энергией деформации оказывается равной затраченной работе. В случае абсолютной жесткости рычага, нерастяжимости веревки и т. д. простая машина не может накопить в себе энергию, и вся работа, произведенная на одном ее конце, полностью передается на другой конец.

Пользуясь двумя законами сохранения: законом сохранения импульса и законом сохранения энергии, можно решить задачу о соударении идеально упругих шаров, т. е. шаров, которые после соударения отскакивают друг от друга, сохраняя суммарную кинетическую энергию.

Пусть два шара движутся по одной прямой (по линии центров). Предположим, что, кроме сил взаимодействия при их соприкосновении, на шары не действуют никакие силы со стороны каких-либо других тел. После соударения (соударение произойдет, если шары движутся навстречу друг другу или если один из них догоняет второй) они будут двигаться по той же прямой, но с измененными скоростями. Будем считать, что нам известны массы шаров и и их скорости и до соударения. Требуется найти их скорости и после соударения.

Из закона сохранения импульса следует, что ввиду того, что на шары не действуют никакие силы, кроме сил их взаимодействия, суммарный импульс должен сохраняться, т. е. импульс до соударения должен равняться импульсу после соударения:

Скорости и направлены вдоль линии центров (в одну и ту же либо в противоположные стороны). Из соображений симметрии следует, что скорости также будут направлены вдоль линии центров. Примем эту линию за ось и спроектируем векторы, входящие в уравнение (102.1), на эту ось. В результате получим уравнение

данном случае и т. д.).

Из уравнений (102.2) и (102.3) можно найти неизвестные величины и . Для этого перепишем эти уравнения в виде

Деля почленно второе уравнение на первое, получим

. (102.4)

Умножив (102.4) на и вычтя из (102.2), придем к соотношению

. (102.5)

Подобным же образом, умножив (102.4) на и сложив с (102.2), найдем

Если, например, первый шар движется в направлении оси , а второй - ему навстречу, то равна модулю скорости , т. е. , а равна модулю скорости , взятому со знаком минус, т. е. . Подставив эти значения в формулы (102.5) и (102.6), получим

Если масса одного шара гораздо больше массы другого, например много больше , то в знаменателе и в числителе формулы (102.5) можно пренебречь членами, содержащими . Если, кроме того, массивный шар покоится, то получаем , т. е. шар отскакивает, как от неподвижной стенки. Действительно, как видно из (102.5), большой шар получит при этом малую скорость, равную приблизительно .

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Рассмотрим случай, когда материальная точка движется из точки 1 в точку 2 под действием приложенных к ней сил (рис.14.1.)

Рисунок 14.1

Причем силы, действующие на материальную точку, могут иметь разную природу, т.е. могут быть консервативными и неконсервативными. Уравнение движения в этом случае запишется в виде

Перепишем в виде

Умножим скалярно уравнение (14.2) на и проинтегрируем от точки 1 до точки 2, получим:

. (14.3)

Учитываем то, что dt =, и интеграл в правой части выражения(14.3) представляет собой работу всех сил, на участке 1-2, можно записать:

(14.4)

Величина

называется кинетической энергией материальной точки. Таким образом, кинетическая энергия материальной точки – это энергия, которой обладает эта точка вследствие своего движения.

Из полученного выражения (14.4) следует, что работа всех сил, действующих на материальную точку на участке траектории 1-2 равна изменению ее кинетической энергии на этом участке.

Потенциальная энергия - это энергия, обусловленная взаимным расположением тел и характером их взаимодействия. При соответствующих условиях возможно изменение потенциальной энергии, за счет чего совершается работа. Для поднятия тела массой m на высоту необходимо совершить работу против сил тяготения Р:, знак минус перед интегралом, т.к. сила Р направлена в сторону противоположную изменениюh .

Проинтегрируем это выражение:

Эта энергия пойдет на увеличение энергии замкнутой системы тело-Земля т.е. численно равна

Считая поверхности Земли , получим

Эта энергия системы тело - Земля и является потенциальной энергией тела, поднятого на высоту h:

Единица кинетической и потенциальной энергии – Джоуль (Дж).

§ 15. Закон сохранения и превращения энергии

Рассмотрим процесс изменения состояния тела, поднятого на высоту h . При этом его потенциальная энергия

Тело начало свободно падать . Из кинематики известно, что момент достижения поверхности земли оно будет иметь скорость

и кинетическую энергию:

(15.1)

Кинетическая энергия тела, упавшего с высоты h , оказалась равной его потенциальной энергии, которую оно имело до начала падения. Следовательно:

На поверхности Земли h=0 и потенциальная энергия , а-максимальна. В начале падения, ат.е. потенциальная энергия переходит (превращается) в кинетическую. Таким образом, при падении тела в системе тело-Земля кинетическая энергия возрастает и, следовательно, ее изменениеравное работе, имеет положительный знак, т.е.



Понравилась статья? Поделитесь с друзьями!