Процесс преобразования электрической энергии. АЭС (с одноконтурным реактором)

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели - для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции - паровой турбиной, на гидроэлектростанции - водяной турбиной. Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин .
Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле; в обмотке якоря индуцируется э. д. с. и возникает ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Принцип действия электрического генератора. Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 67, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3. При вращении витка с некоторой частотой вращения п его стороны (проводники) пересекают магнитные силовые линии потока Фив каждом проводнике индуцируется э. д. с. е . При принятом на рис. 67, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э.д.с. в проводнике, расположенном под северным полюсом,- к нам. Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток i. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е .

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). Как было установлено в главе II, при прохождении тока I по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F. При указанном на рис. 67, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом,- сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 67, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом , стремящимся замедлить вращение якоря генератора. Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент М вн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электро-

магнитного момента М, созданного током нагрузки генератора. Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию - вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе. При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Р эл, увеличиваются ток i, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Р мх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

совпадение по направлению тока i и э. д. с е в проводниках обмотки якоря; это указывает на то, что машина отдает электрическую энергию;

возникновение электромагнитного тормозного момента М, направленного против вращения якоря; из этого вытекает необходимость получения машиной извне механической энергии.

Принцип действия электрического двигателя. Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 67,6), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря. Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток i. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F. При указанном на рис. 67, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,- сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой п. Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент М вн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется по правилу правой руки; следовательно, при указанном на рис. 67, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 67, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. E, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

совпадение по направлению электромагнитного момента М и частоты вращения п; это характеризует отдачу машиной механической энергии;

возникновение в проводниках обмотки якоря э. д. с. е, направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Принцип обратимости электрических машин. Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего. Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током. Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин. Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. Г. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 68, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую. Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 68, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения п. Совпадение по направлению э. д. с. E и тока Iозначает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию. Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E < U машина работает двигателем, при Е > U - генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Непосредственное использование природных источников энергии.

Преобразование с использованием паровой машины

Преобразование с использованием электроэнергии


Преобразование энергии в промышленной энергетике
Как было сказано выше производство электроэнергии является отдельной отраслью промышленности. В настоящее время наибольшую долю электроэнергии производят на трех видах электростанций:

1. ГЭС (гидроэлектростанция)

2. ТЭС (теплоэлектростанция)

3. AЭС (атомная электростанция)

Рассмотрим преобразование энергии на этих видах электростанций:

ГЭС

ТЭЦ

При использование тепловой энергии пара в цепочки преобразования энергии появляется возможность использовать часть тепловой энергии для обогрева (показано пунктиром) или для нужд производства.

АЭС (с одноконтурным реактором)

Тепловой контур.

Основные понятия
Ранее мы рассмотрели виды энергии и возможности её преобразования из одного вида в другой, остановимся подробнее на тепловой энергии, поскольку она играет очень важную роль в процессах происходящих на АЭС.
Как было сказано ранее, тепловая энергия, это энергия хаотического движения молекул или атомов в жидкостях и газах и колебательного движения молекул или атомов в твердом теле. Чем выше скорость этого движения тем большей тепловой энергией обладает тело.
Все мы сталкиваемся в нашей повседневной жизни с процессами передачи тепловой энергии от одного тела к другому, (горячий чай нагревает стакан, радиатор отопления в квартире нагревает воздух и т. д.) исходя из определения тепловой энергии можно дать определение теплообмену.
Определение: Процесс передачи энергии в результате обмена хаотическим движением молекул, атомов или микрочастиц называетсятеплообменом .
Из житейского опыта известно, что тепловая энергия или тепло передается от более горячего тела к более холодному, и кажется вполне логичным принять за меру тепловой энергии температуру, однако это грубейшая ошибка. Температура тела является мерой способности к теплообмену с окружающими телами. Зная температуры двух тел мы можем сказать только о направлении теплообмена. Тело с большей температурой будет отдавать тепло и остывать, а тело с меньшей температурой принимать тепло и нагреваться, однако количество передаваемой энергии определить, исходя только из температуры, невозможно. За примером далеко ходить не надо: попробуйте налить равное количество кипятка в алюминиевую кружку и керамическую. Алюминий практически мгновенно нагреется, почти не остудив воду, а керамика будет нагреваться гораздо меньше и значительно дольше, а изначальная температура кипятка и в том и другом случае 100° С. Отсюда следует вывод: для нагрева на одинаковую температуры различных веществ необходимо различное количество тепловой энергии, каждое вещество обладает своей теплоемкостью
Определение: удельной теплоемкостью вещества называется количество энергии необходимое для нагрева одного килограмма данного вещества на один градус.

где: Q-энергия; С -теплоемкость; m -масса; dT-подогрев;


Способы теплообмена.
Как правило в промышленных энергоустановках процесс преобразования энергии источника в тепловую происходит в одном месте (котел для ТЭС, реактор для АЭС), а процесс преобразования тепловой энергии в механическую и далее в электрическую в другом, следовательно возникает проблема перемещения тепловой энергии в пространстве. Как можно передать тепловую энергию из одной точки пространства в другую?

Теплопроводность
Нагревая один конец металлической проволоки можно заметить, что температура повышается по всей длине, причем чем короче проволока, тем быстрее нагреется противоположная, не нагреваемая напрямую, часть. Нагревая проволоку с одной стороны мы заставляем атомы и электроны в месте нагрева колебаться сильнее, колеблющиеся атомы и электроны вовлекают в колебание соседние атомы и электроны, происходит распространение тепловой энергии в твердом теле, в нашем случае в металлической проволоке. Такой способ передачи тепловой энергии называется теплопроводностью.
Определение : Теплопроводность представляет собой процесс передачи теплоты в сплошной среде посредством хаотического движения микро частиц.
Количество теплоты передаваемое за счет теплопроводности зависит от физических свойств среды в которой происходит теплообмен. Каждое вещество обладает своим коэффициентом теплопроводности l (Металлический прут длинной около метра помещенный одним концом в огонь, невозможно будет удержать в голых руках, деревянная палка такой же формы сгорит больше чем на половину, прежде чем сколь нибудь значительно нагреется).
Чем больше разность температур dT между горячей и холодной точкой среды, тем большее количество тепла передается, в единицу времени. Чем больше площадь поперечного сечения тем большее количество тепла передается, в единицу времени.
Наверное каждый знает как вскипятить воду с помощью костра в деревянной посуде. Нужно бросать в воду раскаленные в огне камни. Нагретые камни сразу смачиваются водой и отдают ей свою теплоту. Процесс передачи тепла от камней к окружающей их воде похож на теплопроводность, но распределение тепловой энергии по объему воды носит другой характер.

Конвективный теплообмен
Рассмотрим, что происходит в объеме холодной воды когда горячие камни нагревают ее часть вокруг себя. Из физики известно, что тела нагреваясь расширяются, другими словам увеличивают свой объем, а поскольку масса остается постоянной, плотность снижается. Как гласит закон Архимеда тело с плотностью большей чем плотность жидкости погружается, а с меньшей всплывает. Тоже самое
можно сказать о нагретой жидкости, обладая меньшей плотностью, она начнет подниматься перемешиваясь с холодными слоями в верхней части сосуда, которые, в свою очередь, начнут опускаться, через некоторое время температура по всему объему станет одинаковой.
Определение: Конвективный теплообмен - перенос теплоты при перемешивании более нагретых частиц среды с менее нагретыми.
В примере, приведенном выше, движения было вызвано разностью плотностей горячих и холодных частей жидкости такая конвекция называется естественной или свободной. Если движение вызвано работой насоса или вентилятора, то конвекция называется вынужденной.
Конвективный теплообмен происходит в газах так же, как и в жидкостях.
Во многих современных АЭС отвод теплоты из реактора происходит путем принудительной прокачки воды, газа или жидкого металла через активную зону. Вещество, которое нагреваясь забирает теплоту от источника называется теплоносителем.

Теплообмен излучением
Опыты показывают, что теплообмен между телами возможен даже если они находятся в вакууме не соприкасаясь друг с другом. В этом случае виды теплообмена описанные выше не могут осуществляться. Как же происходит передача тепловой энергии в данном случае?
Нагретое тело испускает электромагнитные волны которые как известно могут распространятся в безвоздушном пространстве менее нагретое тело поглощает эти волны и нагревается.
Определение : Теплообмен излучением - это передача тепловой энергии с помощью электромагнитных волн.
В современных АЭС при нормальной работе теплообмен излучением пренебрежимо мал по сравнению с конвективным.

Тепловой контур
Рассмотрев способы возможные теплообмена, вернемся к вопросу о передаче тепловой энергии в условиях АЭС или ТЭС. Как известно, на работающих станциях процесс преобразования энергии источника в тепловую происходит непрерывно и в случае прекращения теплоотвода произойдет неизбежный перегрев установки. Следовательно на ряду с источником необходим потребитель тепловой энергии, который будет забирать тепло и либо преобразовывать его в другие формы энергии либо передавать его в другие системы. Передачу тепла от источника к потребителю осуществляется с помощью теплоносителя. На основании выше сказанного можно изобразить простейший тепловой контур, содержащий источник энергии, потребитель энергии, и тракты теплоносителя.

Домашнее задание c. 15-17, 83-97. c. 308-310.

Энергия, от греческого слова energeia – деятельность или действие, - общая мера различных видов движения и взаимодействия.

В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии.

Энергия – плод мысли человека, созданный для описания различных явлений природы.

Энергия измеряется в Джоулях (Дж). Для измерения тепловой энергии используют калории, 1 кал=4.18 Дж, электрическую энергию измеряют в кВт*час=3.6*10 6 Дж=3.6 МДж, механическая энергия измеряется в кг*м, 1кг*м=9.8 Дж.

Различают энергию макромира, микромира и внутреннюю энергию.

Кинетическая энергия – результат изменения состояния движения материальных тел.

Потенциальная энергия – результат изменения положения частей данной системы.

Способы преобразования энергии:

Закон сохранения энергии – энергия не создается и не уничтожается, она переходит из одного вида в другой. Различают энергию упорядоченного движения (свободную – механическую, химическую, электрическую, электромагнитную, ядерную) и энергию хаотического движения – теплоту.

В настоящее время нет способов непосредственного превращения ядерной энергии в электрическую и механическую, нужно вначале пройти стадию превращения энергии в тепловую, а затем в механическую и электрическую.

Современная наука выделяет 4 силы, определяющие все многообразие мира: сила тяготения, электромагнитные и ядерные – сильные и слабые. Каждая из этих сил характеризуется мировой постоянной:

Сила тяготения -  g =6*10 -39 .

Электромагнитные силы -  е =1/137.

Сильные ядерные взаимодействия -  S =1.

Слабые ядерные взаимодействия -  w =3*10 -12 .

Из этих констант получаются все остальные физические постоянные.

Более 20 млрд. лет назад образовалась Вселенная, энергия «большого взрыва» - «родила» энергию, которая составляет основу нашей жизни, она «родила» Солнце и Землю. Энергия Солнца привела к образованию на Земле запасов топливных ресурсов, заставляет постоянно перемещаться водяные и воздушные массы на Земле. Тепловая энергия горячего ядра Земли также участвует в круговороте веществ и превращении энергии.

Человечество стремилось с начала своей истории овладеть энергией в своих интересах. Этапы «овладения» энергией:

  1. мускульная сила животных,

    сила ветра, воды,

    энергия пара

    электроэнергия

    ядерная энергия.

Во Вселенной происходят процессы преобразования энергии из одного вида в другой в огромных масштабах. Человечество находится в самом начале пути понимания этих процессов.

Механическая энергия преобразуется в тепловую – трением, в химическую – путем разрушения структуры вещества, сжатия, в электрическую – путем изменения электромагнитного поля генератора.

Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта – в механическую (турбина), в электрическую (термо э.д.с.)

Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

Электрическая энергия может быть преобразована в механическую (электромотор), в химическую (электролиз), в электромагнитную (электромагнит).

Электромагнитная энергия – энергия Солнца – в тепловую (нагрев воды), в электрическую (фотоэффект → гелиоэнергетика), в механическую (звонок телефона).

Ядерная энергия → в химическую, тепловую, механическую (взрыв), регулируемое деление (реактор) → химическая + тепловая.

Генераторные установки вырабатывают однофазный или трехфазный ток промышленный частоты, а химические источники - постоянный. При этом на практике довольно часто возникают ситуации, когда одного вида электроэнергии недостаточно для работы определенных устройств и требуется выполнять ее преобразование.

С этой целью промышленностью выпускается большое количество электротехнических устройств, которые оперируют с разными параметрами электрической энергии, превращая их из одного вида в другой с различными напряжениями, частотой, количеством фаз и формами сигналов. По выполняемым функциям они подразделяются на устройства преобразования:

    простые;

    с возможностью регулирования выходного сигнала;

    наделенные способностью стабилизации.

Способы классификации

По характеру выполняемых операций преобразователи делят на устройства:

    выпрямления;

    инвертирования в один или несколько этапов;

    изменения частоты сигнала;

    преобразования числа фаз электрической системы;

    модификации вида напряжения.

По способам управления происходящих алгоритмов регулируемые преобразователи работают на:

    импульсном принципе, используемом в схемах постоянного тока;

    фазовом методе, применяемом в цепях гармоничных колебаний.

Самые простые конструкции преобразователей могут не наделяться функцией управления.

Все устройства преобразования могут использовать один из следующих видов электрической схемы:

    мостовую;

    нулевую;

    на основе трансформатора или без него;

    с одной, двумя, тремя или несколькими фазами.

Выпрямительные устройства

Это наиболее распространенный и старый класс преобразователей, позволяющих получать выпрямленный или стабилизированный постоянный ток из переменного синусоидального обычно промышленной частоты.

Раритетные экспонаты

Маломощные устройства

Буквально несколько десятилетий назад в радиотехнических и электронных устройствах еще использовались селеновые конструкции и ламповые на основе вакуума приборы.


В основе подобных устройств использовался принцип выпрямления тока одним единичным элементом из селеновой пластины. Их последовательно собирали в единую конструкцию через монтажные переходники. Чем выше требовалось напряжение для выпрямления, тем большее количество таких элементов использовалось. Они не отличались большими мощностями и выдерживали нагрузку в несколько десятков миллиампер.


У ламповых выпрямителей внутри герметичного стеклянного корпуса создавался вакуум. В нем располагались электроды: анод и катод с нитью накала, обеспечивающей протекание термоэлектронной эмиссии.

Подобный ламповые приборы обеспечивали питание постоянным током для различных схем радиоприемников и телевизоров вплоть до конца прошлого столетия.

Игнитроны - мощные устройства

В промышленных устройствах раньше широко использовались ионные ртутные приборы с анодом и катодом, работающие по принципу управляемого дугового заряда. Они применялись там, где требовалось оперировать нагрузкой постоянного тока с силой в сотни ампер при выпрямленном напряжении до пяти киловольт включительно.


Для протекания тока от катода в направлении анода использовался поток электронов. Он создавался за счет дугового разряда, вызываемого на одном или нескольких участках катода, называемых светящимися катодными пятнами. Они формировались при включении вспомогательной дуги от поджигающего электрода до момента зажигания основной.

Для этого создавались кратковременные импульсы в несколько миллисекунд с силой тока до десятков ампер. Изменение формы и силы импульсов позволяло управлять работой игнитрона.

Эта конструкция обеспечивала хорошее поддержание напряжения при выпрямлении и довольно высокий КПД. Но, техническая сложность конструкции и трудности эксплуатации привели к отказу от ее использования.

Полупроводниковые приборы

Диоды

В основу их работы положен принцип проводимости тока в одну сторону за счет свойств p-n перехода, образованного контактами между полупроводниковыми материалами или металлом и полупроводником.


Диоды пропускают ток только определенного направления, а при прохождении через них переменной синусоидальной гармоники срезают одну полуволну и за счет этого широко используются как выпрямительные устройства.

Современные диоды выпускаются очень широким ассортиментом и наделяются разнообразными техническими характеристиками.

Тиристоры

В составе тиристора используется четыре слоя проводимости, образующих более сложную полупроводниковую структуру, чем у диода с тремя последовательно соединенными p-n переходами J1, J2, J3. Контакты с внешним слоем «p» и «n» используются в качестве анода и катода, а с внутренним - как управляющий электрод УЭ, который применяется для включения тиристора в работу и выполнения регулирования.


Выпрямление синусоидальной гармоники производится по тому же принципу, как и у полупроводникового диода. Но, для работы тиристора необходимо учесть определенную особенность - структура его внутренних переходов должна быть открыта для прохождения электрических зарядов, а не закрыта.

Это осуществляется пропусканием тока определенной полярности через управляющий электрод. На картинке ниже показаны способы открытия тиристора, используемые заодно для регулировки величины пропускаемого тока в разные моменты времени.


При подаче тока через УЭ в момент перехода синусоиды через нулевое значение создается максимальная величина, которая постепенно уменьшается в точках «1», «2», «3».

Таким способом происходит выпрямление тока в комплексе с регулированием тиристором. Аналогичным образом работают симисторы и мощные полевые MOSFET и/или AGBT транзисторы в силовых цепях. Но, они не выполняют функцию выпрямления тока, пропуская его в обоих направлениях. Поэтому в их схемах управления используется дополнительный алгоритм прерывания импульса.

Преобразователи постоянного тока

Эти конструкции осуществляют обратную выпрямителям операцию. Они применяются для выработки переменного синусоидального тока из постоянного, получаемого от химических источников тока.

Раритетные разработки

С конца XIX века для преобразования постоянного напряжения в переменное использовались электрические машинные конструкции. В их состав входил электродвигатель постоянного тока, получавший энергию от аккумулятора или комплекта батарей и генератор переменного напряжения, якорь которого вращался от привода двигателя.

В отдельных устройствах обмотка генератора наматывалась прямо на общем роторе двигателя. При этом способе не только меняли форму сигнала, но и, как правило, увеличивали амплитуду напряжения или частоту.

Если на якоре генератора намотаны три разнесенные по 120 градусов обмотки, то с его помощью получали уже равноценное симметричное трехфазное напряжение.


Умформеры широко использовались вплоть до 70-х годов для радиоламповых устройств, оборудования троллейбусов, трамваев, электровозов до массового внедрения полупроводниковых элементов.

Инверторные преобразователи

Принцип работы

За основу рассмотрения возьмем схему проверки тиристора КУ202 от батарейки и лампочки.


В цепь подачи плюсового потенциала батарейки на анод врезан нормально замкнутый контакт кнопки SA1 и лампочка накаливания малой мощности. Подключение управляющего электрода выполнено через токоограничивающий резистор и открытый контакт кнопки SA2. Катод соединен жестко с минусом батарейки.

Если в момент времени t1 нажать кнопку SA2, то по цепочке управляющего электрода на катод потечет ток, который откроет тиристор и лампочка, включенная в анодную ветвь, загорится. Она, благодаря конструктивной особенности этого тиристора, будет продолжать гореть даже при размыкании контакта SA2.

Теперь в момент времени t2 нажмем на кнопку SA1. Цепь питания анода обесточится, а лампочка погаснет из-за того, что прохождение тока через нее прекратится.

На графике представленной картинки видно, что внутри промежутка времени t1÷t2 проходил постоянный ток. Если переключения кнопок выполнять очень быстро, то можно сформировать с положительным знаком. Точно так же можно создать отрицательный импульс. С этой целью достаточно немного изменить схему для прохождения тока противоположного направления.

Последовательность двух импульсов положительного и отрицательного значения создает форму сигнала, называемого в электротехнике «меандр». Его прямоугольная форма довольно грубо напоминает синусоиду с двумя полуволнами противоположных знаков.

Если в рассмотренной схеме заменить кнопки SA1 и SA2 контактами реле или транзисторными ключами и коммутировать их по определенному алгоритму, то можно будет в автоматическом режиме создавать ток с формой меандра и подгонять его под определенную частоту, скважность, период. Такими переключениями занимается специальная электронная схема управления.

Структурная схема силовой части

В качестве примера рассмотрим наиболее простую систему первичных цепей инвертора, работающего по мостовой схеме.


Здесь вместо тиристора формированием прямоугольного импульса занимаются специально подобранные полевые транзисторные ключи. В диагональ их моста включено сопротивление нагрузки Rн. Силовые электроды каждого транзистора «исток» и «сток» встречно соединены с шунтирующими диодами, а на «затвор» подключены выходные контакты схемы управления.

За счет автоматической работы управляющих сигналов на нагрузку выдаются различные по длительности и знаку импульсы напряжения. Их очередность и характеристики подогнаны под оптимальные параметры выходного сигнала.

Под действием приложенных напряжений на диагональном сопротивлении с учетом переходных процессов возникает ток, форма которого уже больше приближена к синусоиде, чем у меандра.

Сложности технической реализации

Для хорошего функционирования силовой схемы инверторов необходимо обеспечивать надежную работу системы управления, которая основана на коммутации ключей. Они наделяются свойствами двусторонней проводимости и формируются за счет шунтирования транзисторов подключением обратных диодов.

С целью регулирования амплитуды выходного напряжения чаще всего используется за счет выбора площади импульса каждой полуволны методом управления ее длительностью. Кроме этого способа встречаются устройства, работающие на амплитудном импульсном преобразовании.

В процессе формирования выходных цепей напряжения возникает нарушение симметрии полуволн, которое отрицательно сказывается на работе индуктивных нагрузок. Наиболее характерно это заметно у трансформаторов.

При работе системы управления задается алгоритм формирования ключей силовой цепи, включающий три этапа:

1. прямой;

2. короткозамкнутый;

3. инверсный.

На нагрузке возможны появления не только пульсирующих, но и изменяющихся по направлению токов, которые создают дополнительные помехи на зажимах источника.

Типовые конструкции

Среди множества различных технологических решений, используемых для создания инверторов, распространены три схемы, рассматриваемые по степени увеличения сложности:

1. мостовая без трансформатора;

2. с нулевым выводом трансформатора;

3. мостовая с трансформатором.

Формы выходных сигналов

Инверторы создаются для выдачи напряжений:

    прямоугольного вида;

    трапеции;

    ступенчатых чередующихся сигналов;

    синусоид.

Преобразователи фаз

Промышленность выпускает электродвигатели для работы в конкретных условиях эксплуатации с учетом питания от определенных видов источников. Однако, на практике возникают ситуации, когда по разным причинам необходимо подключить трехфазный асинхронный двигатель в однофазную сеть. Для этого разработаны различные электрические схемы и устройства.

Энергозатратные технологии

Статор трехфазного асинхронного двигателя включает в свой состав три разнесенные по 120 градусов навитые определенным образом обмотки, каждая из которых при подаче в нее тока своей фазы напряжения создает собственное вращающееся магнитное поле. Направление токов выбрано так, что их магнитные потоки дополняют друг друга, обеспечивая взаимное действие для вращения ротора.

Когда имеется всего одна фаза напряжения питания для такого двигателя, то возникает необходимость сформировать из нее три цепочки тока, каждая из которых тоже смещена на 120 градусов. Иначе вращение не получится или будет неполноценным.

В электротехнике существует два простых способа поворота вектора тока относительно напряжения методом подключения на:

1. индуктивную нагрузку, когда ток начинает отставать от напряжения на 90 градусов;

2. емкость для создания опережения тока на 90 градусов.


На приведенной картинке показано, что от одной фазы напряжения Ua можно получить ток, сдвинутый по углу не на 120, а только на 90 градусов вперед или назад. Причем для этого потребуется еще подбирать номиналы конденсаторов и дросселей чтобы создать допустимый режим работы двигателя.

В практических решениях подобных схем чаще всего останавливались на конденсаторном способе без использования индуктивных сопротивлений. Для этого в одну обмотку подавали напряжение фазы питания без каких-либо преобразований, а в другую - сдвинутую конденсаторами. В результате создавался приемлемый крутящий момент для двигателя.

Но чтобы раскрутить ротор требовалось создать дополнительный крутящий момент подключением третьей обмотки через пусковые конденсаторы. Использовать их для постоянной работы невозможно из-за образования больших токов в пусковой схеме, которые быстро создают повышенный нагрев. Поэтому эта цепочка включалась кратковременно для набора момента инерции вращения ротора.

Подобные схемы проще реализовывались благодаря простому формированию конденсаторных батарей определенных номиналов из отдельных доступных элементов. Дроссели же необходимо было самостоятельно рассчитывать и наматывать, что затруднительно выполнять не только в домашних условиях.

Однако, наилучшие условия для работы двигателя создавались при комплексном включении конденсатора и дросселя в разные фазы с подбором направлений токов в обмотках и применением токогасящих резисторов. При таком способе потери мощности двигателя составляли до 30%. Однако, конструкции подобных преобразователей были экономически не выгодны потому, что они потребляли для работы больше электроэнергии, чем сам двигатель.

Конденсаторная схема запуска тоже потребляет повышенную норму электричества, но в меньшей степени. К тому же, двигатель, подключенный в ее схему, способен выработать мощность, незначительно превышающую 50% от той, которая создавалась при нормальном трехфазном питании.

Из-за сложностей подключения трехфазного двигателя в цепь однофазного питания и больших потерь электроэнергии и выходной мощности такие преобразователи показали свою низкую эффективность, хотя продолжают работать в отдельных установках и станках.

Инверторные устройства

Полупроводниковые элементы позволили создать более рациональные преобразователи фаз, выпускаемые на промышленной основе. Их конструкции обычно предназначены для эксплуатации в трехфазных схемах, но они могут быть созданы для работы и с большим количеством разнесенных на разные углы цепочек.

При работе преобразователей, питаемых от одной фазы, выполняется следующая очередность технологических операций:

1. выпрямление однофазного напряжения диодной сборкой;

2. сглаживание пульсаций схемой стабилизации;

3. преобразование постоянного напряжения в трехфазное за счет метода инвертирования.

При этом силовая схема может состоять из трех однофазных частей, работающих автономно, как рассмотрено ранее, или одной общей, собранной, например, по системе автономного трехфазного инверторного преобразования с использованием нулевого общего провода.


Здесь на каждую нагрузку фазы работают свои пары полупроводниковых элементов, которые управляются от общей системы управления. Они создают синусоидальные токи в фазах сопротивлений Ra, Rb, Rc, которые подключены к общей схеме питания через нулевой провод. В нем происходит сложение векторов токов от каждой нагрузки.

Качество приближения выходного сигнала к виду чистой синусоиды зависит от общей конструкции и сложности используемой схемы.

Преобразователи частоты

На основе инверторов создаются устройства, позволяющие в широких пределах изменять частоту синусоидальных колебаний. Для этого поступающая на них электроэнергия в 50 герц претерпевает следующие изменения:

    выпрямления;

    стабилизации;

    преобразования напряжения повышенной частоты.


В основу работы заложены те же принципы предыдущих конструкций за исключением того, что система управления на основе микропроцессорных плат формирует на выходе преобразователя выходное напряжение повышенной частоты в десятки килогерц.

Частотное преобразование на основе автоматических устройств позволяет оптимально регулировать работу электродвигателей в моменты пуска, торможения и реверса, а также удобно изменять скорость вращения ротора. При этом резко снижается вредное влияние переходных процессов во внешней электрической сети питания.

Сварочные инверторы

Основное назначение этих преобразователей напряжение состоит в поддержании стабильного горения дуги и легкого управления всеми ее характеристиками, включая поджиг.


С этой целью в конструкцию инвертора включены несколько блоков, осуществляющих последовательное выполнение:

    выпрямления трехфазного или однофазного напряжения;

    стабилизацию параметров фильтрами;

    инвертирование из стабилизированного постоянного напряжения высокочастотных сигналов;

    преобразование в/ч напряжения понижающим трансформатором для повышения величины сварочного тока;

    вторичное выпрямление выходного напряжения для формирования дуги у сварки.

За счет использования высокочастотного преобразования сигнала значительно снижаются габариты сварочного трансформатора и экономятся материалы для всей конструкции. обладают большими преимуществами в эксплуатации по сравнении со своими электромеханическими аналогами.

Трансформаторы: преобразователи напряжения

В электротехнике и энергетике по-прежнему для изменения амплитуды сигнала напряжения наибольшее распространение имеют трансформаторы, работающие на электромагнитном принципе.


Они имеют две или большее количество обмоток и , по которому передается магнитная энергия для преобразования входного напряжения в выходное с измененной амплитудой.



Понравилась статья? Поделитесь с друзьями!