Энергетический уровень химия. Самоучитель по химии

2. Строение ядер и электронных оболочек атомов

2.6. Энергетические уровни и подуровни

Наиболее важной характеристикой состояния электрона в атоме является энергия электрона, которая согласно законам квантовой механики изменяется не непрерывно, а скачкообразно, т.е. может принимать только вполне определенные значения. Таким образом, можно говорить о наличии в атоме набора энергетических уровней.

Энергетический уровень - совокупность АО с близкими значениями энергии.

Энергетические уровни нумеруют с помощью главного квантового числа n , которое может принимать только целочисленные положительные значения (n = 1, 2, 3, ...). Чем больше значение n , тем выше энергия электрона и данного энергетического уровня. Каждый атом содержит бесконечное число энергетических уровней, часть из которых в основном состоянии атома заселена электронами, а часть - нет (эти энергетические уровни заселяются в возбужденном состоянии атома).

Электронный слой - совокупность электронов, находящихся на данном энергетическом уровне.

Иными словами, электронный слой - это энергетический уровень, содержащий электроны.

Совокупность электронных слоев образует электронную оболочку атома.

В пределах одного и того же электронного слоя электроны могут несколько различаться по энергии, в связи с чем говорят, что энергетические уровни расщепляются на энергетические подуровни (подслои ). Число подуровней, на которые расщепляется данный энергетический уровень, равно номеру главного квантового числа энергетического уровня:

N (подур) = n (уровн) . (2.4)

Подуровни изображаются с помощью цифр и букв: цифра отвечает номеру энергетического уровня (электронного слоя), буква - природе АО, формирующей подуровни (s -, p -, d -, f -), например: 2p -подуровень (2p -АО, 2p -электрон).

Таким образом, первый энергетический уровень (рис. 2.5) состоит из одного подуровня (1s ), второй - из двух (2s и 2p ), третий - из трех (3s , 3p и 3d ), четвертый из четырех (4s , 4p , 4d и 4f ) и т.д. Каждый подуровень содержит определенное число АО:

N (AO) = n 2 . (2.5)

Рис. 2.5. Схема энергетических уровней и подуровней для первых трех электронных слоев

1. АО s -типа имеются на всех энергетических уровнях, p -типа появляются начиная со второго энергетического уровня, d -типа - с третьего, f -типа - с четвертого и т.д.

2. На данном энергетическом уровне может быть одна s -, три p -, пять d -, семь f -орбиталей.

3. Чем больше главное квантовое число, тем больше размеры АО.

Поскольку на одной АО не может находиться более двух электронов, общее (максимальное) число электронов на данном энергетическом уровне в 2 раза больше числа АО и равно:

N (e) = 2n 2 . (2.6)

Таким образом, на данном энергетическом уровне максимально может быть 2 электрона s -типа, 6 электронов р -типа и 10 электронов d -типа. Всего же на первом энергетическом уровне максимальное число электронов равно 2, на втором - 8 (2 s -типа и 6 р -типа), на третьем - 18 (2 s -типа, 6 р -типа и 10 d -типа). Эти выводы удобно обобщить в табл. 2.2.

Таблица 2.2

Связь между главным квантовым числом, числом э

Опыты по рассеянию - частиц обнаружили существование в атомах тяжелого положительного ядра и электронной оболочки. Дальнейшие сведения о свойствах атомов дало изучение таких атомных процессов, которые сопровождаются изменением внутренней энергии атома. Сюда относятся столкновения атомов с электронами, испускание и поглощение света атомами и др. Исследуя эти процессы, удалось установить своеобразные и очень важные закономерности, которым подчиняется внутренняя энергия атомов.

Столкновения электронов с атомами. Наиболее простые условия для изучения передачи энергии от электронов к атомам могут быть осуществлены в устройстве, изображенном на рис. 359. Из трубки 1 выкачан воздух, и в нее введено небольшое количество одноатомных паров какого-нибудь вещества, например ртути. Электроны, испускаемые накаленным катодом 2, ускоряются разностью потенциалов действующей между катодом 2 и металлической сеткой 4. Благодаря очень малой концентрации атомов электроны пролетают короткий путь между катодом и первой сеткой без столкновений и приобретают энергию .

Рис. 359. Устройство для измерения потери энергии электроном при движении в парах ртути: 1 – стеклянная трубка заполненная парами ртути (давление тысячи доли ), 2 – накаленный катод (нагреватель на чертеже не указан); 3 – анод, 4 и 5 – редкие металлические сетки, соединенные между собой, и ускоряющая и тормозящая разность потенциалов

За первой сеткой 4 на пути между нею и второй сеткой 5 электрическое поле равно нулю, так как сетки находятся при одинаковом потенциале, и энергия электрона может измениться только за счет соударения с атомом. Путь между сетками выбирается достаточно длинным, так что каждый электрон испытывает хотя бы одно соударение. Далее, на пути между второй сеткой и анодом действует разность потенциалов , тормозящая электроны; ввиду этого до анода могут дойти только те электроны, энергия которых больше .

Постепенно увеличивая , определим запирающую разность потенциалов, т. е. то наименьшее значение , при котором электроны не доходят до анода и ток через гальванометр прекращается. Измерив запирающую разность потенциалов, можно установить, теряют ли электроны энергию при столкновениях с атомами. В самом деле, если на пути между сетками электроны не теряют энергии, то запирающая разность потенциалов будет равна ускоряющей; в противном случае она будет меньше. При этом, если каждый электрон отдает энергию , то превышение ускоряющего напряжения над тормозящим составит .

Опыты такого рода, проведенные с парами ртути, дали замечательный результат. Оказалось, что передача энергии от электронов к атомам существенно зависит от энергии электрона. Пока энергия электронов меньше, чем (т. е. ), электроны вовсе не теряют энергии при соударениях с атомами (т. е. ). Но когда энергия электронов достигает (или немного превышает) (), потеря энергии при соударениях сразу становится большой (т. е. ). При этом при столкновении электрон отдает, а значит, атом ртути воспринимает всегда о дну и ту же порцию энергии, равную . Очевидно, эта величина характеризует свойство атома ртути: энергия его может меняться только на конечную величину, равную . Меньшую энергию атом ртути не воспринимает.

При изучении механики, теплоты, электричества мы не встречались с подобным явлением: энергия любого тела или системы тел в принципе могла изменяться непрерывно, т. е. сколь угодно малыми порциями. В случае же атома ртути непрерывное изменение энергии невозможно - энергия ртутного атома меняется только прерывно, т. е. на конечную величину.

Делая соответствующие опыты с другими веществами, мы приходим к тому же заключению о прерывности {дискретности) энергетических состояний атомов.

Исследование оптических спектров. Как известно (§ 173), элементы в газообразном состоянии обладают линейчатыми спектрами испускания и поглощения света. Каждому элементу свойственны определенные спектральные линии, отличные от линий других элементов. Так как атомы газа находятся в среднем на больших расстояниях и не влияют друг на друга, частоты линейчатого спектра элемента должны определяться свойствами отдельного атома этого элемента.

В гл. XXI мы выяснили, что световая энергия существует в виде мельчайших неделимых порций - квантов; атомы должны, следовательно, изучать и поглощать свет такими же порциями, квантами. Энергия кванта пропорциональна частоте света , т. е. равна , где - постоянная Планка. Энергия испущенного атомом кванта по закону сохранения энергии равна разности энергий атома до после излучения, т. е.

где - энергия начального состояния атома (до излучения); - энергия конечного состояния атома (после излучения).

Соотношение (204.1) связывает изменение энергии атома при испускании или поглощении света с частотой последнего . Если бы энергия атома могла испытывать всевозможные изменения, то в атомном спектре присутствовали бы всевозможные частоты и он был бы сплошным подобно спектру раскаленного твердого тела. В действительности же атомный спектр (т. е. спектр испускания или поглощения одноатомного газа) не сплошной, а линейчатый. Он содержит только некоторые определенные характерные для данного атома частоты. Следовательно, энергия атома не может испытывать всевозможные, любые изменения. Энергия атома может изменяться только на некоторые определенные значения. Зная спектр вещества, нетрудно найти эти значения с помощью соотношения (204.1).

Так, например, спектр поглощения ртутного пара содержит следующие линии (в порядке убывания длин волн); и т. д. Подставляя в (204.1), находим для первой линии

Для второй и третьей линий получаем соответственно и . Атом ртути может, таким образом, воспринимать энергию только в виде порций, равных и т. д. Наименьшая воспринимаемая порция оказывается равной в согласии с результатом, полученным из опытов по соударениям электронов с атомами.

Итак, оба рассмотренных нами класса явлений - оптические спектры и взаимодействие атомов с электронами - указывают на прерывный (дискретный) характер внутренней энергии атомов. Энергия атома не может изменяться непрерывно. Она изменяется скачками на определенные, конечные порции, различные для разных атомов. Отсюда следует, что энергия атома не может быть любой, а может принимать только некоторые избранные значения, характерные для каждого атома. Возможные значения внутренней энергии атома получили название энергетических или квантовых уровней.

Схема энергетических уровней атома водорода, построенная на основании спектральных данных, изображена на рис. 360 в виде ряда параллельных линий. Расстояние между двумя линиями равно разности энергий двух состояний водородного атома и, следовательно, пропорционально частоте кванта, излучаемого при переходе из одного состояния в другое (более низкое). Поэтому расстояния между уровнями выражают в некотором масштабе частоты спектральных линий водорода.

на уровень и т. д. (см. также § 175)

Атом, находящийся в одном из высших энергетических состояний (обозначенных номером на рис. 360), через небольшой промежуток времени (около ) перейдет в более бедное энергией состояние, испуская соответствующий квант. Из низшего энергетического состояния атом не может самопроизвольно (без сообщения энергии извне) перейти в другое состояние. Следовательно, низшее состояние является устойчивым). При нормальных условиях все атомы находятся в низшем энергетическом состоянии, и газ не светится.

Сообщая атому энергию, мы можем возбудить его, т. е. перевести из нормального (низшего) состояния в одно из высших энергетических состоянии. В случае водорода расстояние от низшего энергетического уровня до ближайшего высшего уровня составляет . Это наименьшая порция энергии и, которую находящийся в низшем состоянии водородный атом может поглотить. Меньшей энергии атом водорода не может воспринять, ибо у него не существует состояний, энергия которых отличается от энергии нормального состояния меньше чем на . Для атома ртути аналогичная величина равна, как мы видели, .

34.Энергетические уровни в атомах и молекулах. Испускание и поглощение энергии при переходах между энергетическими уровнями. Спектр атома водорода.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ МОЛЕКУЛ

Так как молекулы состоят из атомов, то внутримолекулярное движение сложнее внутриатомного. В молекуле кроме движе­ния электронов относительно ядер происхо­дит колебательное движение атомов около их положения равновесия (колебание ядер вместе с окружающими их электронами) и вращательное движение молекулы как целого Электронному, колебательному и враща­тельному движениям молекулы соответствуют три типа уровней энергии: Еэл, Екол и Евр. Согласно квантовой механике, энергия всех видов движения в молекуле принимает только дискретные значения (квантуется). Представим приближенно полную энергию Е молекулы суммой квантованных значении энергий разных видов: Е = Еэл + Екол + Евр.

Расстояние между электронными уровнями энергии порядка нескольких электрон-вольт, между соседними колебательными уровнями 10~2-10"" эВ, между соседними вращательными уровнями Ю-5 _ ю-з эВ.

ОСОБЕННОСТИ ИЗЛУЧЕНИЯ И ПОГЛОЩЕНИЯ ЭНЕРГИИ АТОМАМИ И МОЛЕКУЛАМИ

Атом и молекула могут находиться в стационарных энергетических состояниях. В этих состояниях они не излучают и не поглощают энергии. Энергетические состояния схематически изображают в виде уровней. Самый нижний уровень энергии - основной - соответствует основному состоянию.

При квантовых переходах атомы и молекулы скачкообразно переходят из одного стационарного состояния в другое, с одного энергетического уровня на другой. Изменение состояния атомов связано с энергетическими перехо­дами электронов. В молекулах энергия может изменяться не только в результате электронных переходов, но и вследствие изменения колебания атомов и переходов между вращательными уровнями. При переходе с более высоких энергетических уровней на нижние атом или молекула отдает энергию, при обратных переходах поглощает. Атом в основном состоянии способен толь­ко поглощать энергию. Различают два типа квантовых переходов:

1) без излучения или поглощения элек­тромагнитной энергии атомом или молекулой. Такой безызлучательный переход происходит при взаимодействии атома или молекулы с другими частицами, например

в процессе столкновения. Различают неупругое столкновение, при котором изменяется внутреннее состояние атома и осуществляется безызлучательный переход, и упругое - с изменением кинетической энергии атома или молекулы, но с сохранением внутреннего состоя­ния;

2) с излучением или поглощением фотона. Энергия фотона равна разности энергий начального и конечного стационарных состояний атома или молекулы:

Формула (29.1) выражает закон сохранения энергии

В зависимости от причины, вызывающей квантовый переход с испусканием фотона, различают два вида излучения. Если эта причина внутренняя и возбужденная частица самопроизвольно переходит на нижний энергетический уровень, то такое излучение называют спонтанным (рис. 29.1, а). Оно случайно и хаотично по времени, частоте (могут быть переходы между разными подуров­нями), по направлению распространения и поляризации. Обычные источники света испускают в основном спонтанное излучение. Дру­гое излучение вынужденное, или индуцированное (рис. 29.1, б). Оно возникает при взаимодействии фотона с возбужденной частицей, если энергия фотона равна разности уровней энергий. В результате вынужденного квантового перехода от частицы будут распростра­няться в одном направлении два одинаковых фотона: один - пер­вичный, вынуждающий, а другой - вторичный, испущенный. Излучаемая атомами или молекулами энергия формирует спектр испускания, а поглощаемая - спектр поглощения.

Интенсивность спектральных линий определяется числом одина­ковых переходов, происходящих в секунду, и поэтому зависит от количества излучающих (поглощающих) атомов и вероятности соответствующего перехода.

Квантовые переходы осуществляются не между любыми энерге­тическими уровнями. Установлены правила отбора, или запрета, формулирующие условия, при которых переходы возможны и не­возможны или маловероятны.

Энергетические уровни большинства атомов и молекул достаточ­но сложны. Структура уровней и, следовательно, спектров зависит не только от строения одиночного атома или молекулы, но и от внешних причин.

Электромагнитное взаимодействие электронов приводит к тонко­му расщеплению1 энергетических уровней (тонкая структура). Вли­яние магнитных моментов ядер вызывает сверхтонкое расщепление (сверхтонкая структура). Внешние по отношению к атому или моле­куле электрические и магнитные поля также вызывают расщепле­ние энергетических уровней (явления Штарка и Зеемана; см. § 30.2).

Спектры являются источником различной информации.

Прежде всего по виду спектра можно идентифицировать атомы и молекулы, что входит в задачи качественного спектрального анали­за. По интенсивности спектральных линий определяют количество излучающих (поглощающих) атомов - количественный спектраль­ный анализ. При этом сравнительно легко находят примеси в кон­центрациях 10~5-10~6% и устанавливают состав образцов очень малой массы - до нескольких десятков микрограммов.

По спектрам можно судить о строении атома или молекулы, структуре их энергетических уровней, подвижности отдельных частей больших молекул и т.п. Зная зависимость спектров от по­лей, воздействующих на атом или молекулу, получают информацию о взаимном расположении частиц, ибо воздействие соседних атомов (молекул) осуществляется посредством электромагнитного поля.

Изучение спектров движущихся тел позволяет на основании оптического эффекта Доплера определить относительные скорости излучателя и приемника излучения.

Если учесть, что по спектру вещества удается сделать выводы о его состоянии, температуре, давлении и т.п., то можно высоко оце­нить использование излучения и поглощения энергии атомами и молекулами как исследовательский метод.

В зависимости от энергии (частоты) фотона, испускаемого или поглощаемого атомом (или молекулой), классифицируют следу­ющие виды спектроскопии: радио-, инфракрасная, видимою излуче­ния, ультрафиолетовая и рентгеновская.

По типу вещества (источника спектра) различают атомные, молекулярные спектры и спектры кристаллов.

Поглощение света (закон Бугера)

ПС рентгеновских и гамма-лучей количественно описывается законом Бугера:

Где I0 – интенсивность падающего излучения; I – интенсивность излучения после прохождения слоя вещ-ва толщиной х. Эта формула отличается от закона Бугера для света только обозначением коэффициента μ, в случае ионизирующего излучения он наз-ся коэффициентом ослабления. Коэффициент зависит, во-первых, от рода вещ-ва: чем тяжелее элемент, тем коэффициент ослабления больше. Во-вторых, μ очень сильно зависит от рода и энергии излучения.

В медпрактике мощность ионизирующих излучений обычно характеризуется не интенсивностью I, а так называемой мощностью дозы Р. Но Р и I пропорциональны друг другу, поэтому:

Р=Р0*exp (-μx)

Наряду с коэф. ослабления часто пользуются др. константой, называемой слой половинного ослабления. Это толщина вещ-ва, к-я ослабляет мощность дозы вдвое. Его обычно обозначают d0,5. μ=0,693/ d0,5 и закон Бугера можно написать в такой форме: Р=Р0*exp (0,693х/ d0,5).

Применяя понятие слоя половинного ослабления, можно наглядно представить, как изменяется поток излучения при прохождении через вещество.

Зная вел-ну слоя половинного ослабления в стандартном вещ-ве, можно сравнивать жесткость разных излучений. Чем больше d0,5 , тем более жестким явл. Излучение. Это практически удобно, т.к. слой половинного ослабления легко определить любым дозиметрическим прибором, если имеется набор пластинок разной толщины.

В ряде случаев поглощающий слой вещ-ва удобно характеризовать не толщиной, а вел-й массы, приходящейся на единицу площади (m/S). Пусть имеется пластинка площадью S и толщиной х. Объем такой пластинки будет равен S*x а масса m=S*x*ρ, где ρ – плотность поглощающего материала. Отсюда х=m/Sρ и х=(μ/ρ)*(m/S) и далее: Р=Р0*exp(-((μ/ρ)*(m/S))).

Величину μ/ρ=μмасс называют массовым коэффициентом ослабления. Пользоваться им более удобно, чем линейным коэффициентом μ, п.ч. значения массовых коэффициентов ослабления в разных вещ-х гораздо меньше отличаются друг от друга.

Если излучение проходит последовательно через неск-ко разных вещ-в, то при использовании массового коэффициента ослабления можно как бы все их объединить в один слой с усредненной плотностью, что значительно упрощает расчет.

РАССЕЯНИЕ СВЕТА

Рассеянием света называют явление, при котором распростра­няющийся в среде световой пучок отклоняется по всевозможным направлениям.

Необходимое условие для возникновения рассеяния света - наличие оптических неоднородностей, т.е. областей с иным, чем основная среда, показателем преломления. Рассеянию и дифракции света присущи некоторые общие черты, оба явления зависят от соотношения преграды или неоднородности и длины волны. Отличие между этими явлениями заключается в том, что дифракция обусловливается интерференцией вторичных волн, а рассеяние - сложением (а не интерференцией!) излучений, возникающих при вынужденных колебаниях электронов в неоднородностях под воздействием света.

Различают два основных вида таких неоднородностей:

1) мелкие инородные частицы в однородном прозрачном вещест­ве. Такие среды являются мутными: дым (твердые частицы в газе), туман (капельки жидкости в газе), взвеси, эмульсии и т.п. Рассея­ние в мутных средах называют явлением Тиндаля.

2) оптические неоднородности, возникающие в чистом веществе из-за статистического отклонения молекул от равномерного рас­пределения (флуктуации плотности). Рассеяние света на неоднородностях этого типа называют молекулярным; например, рассея­ние света в атмосфере.

Уменьшение интенсивности света вследствие рассеяния, как и при поглощении, описывают с помощью показательной функции

Ii =I0-ml ,где m - показатель рассеяния (натуральный).

При совместном действии поглощения и рассеяния света ослаб­ление интенсивности также является показательной функцией Ii =I0-µl , где µ - показатель ослабления (натуральный). Как нетрудно ви­деть, µ= т + k.

Рэлей установил, что при рассеянии в мутной среде на неод-нородностях, приблизительно меньших 0,2А, а также при молеку­лярном рассеянии интенсивность рассеянного света обратно пропор­циональна четвертой степени длины волны (закон Рэлея): I~1/גּ4.

ОПТИЧЕСКИЕ АТОМНЫЕ СПЕКТРЫ

Атомными спектрами называют как спектры испускания, так и спектры поглощения, которые возникают при квантовых переходах между уровнями свободных или слабовзаимодействующих атомов.

Под оптическими атомными спек- ЦЭВ трами будем понимать те, которые обусловлены переходами между уров­нями внешних электронов с энергией фотонов порядка нескольких

электрон-вольт. Сюда относятся ультрафиолетовая, видимая и близкая инфракрасная (до микрометров) области спектра.

Наибольший интерес представляют оптические атомные спектры испуска­ния, которые получают от возбужден­ных атомов. Их возбуждение обычно достигаемся в результате безызлучательных квантовых переходов при электрическом разряде в газе или нагревании вещества пламенем газо­вых горелок, электрической дугой или искрой.

Атома водорода и водородоподобных ионов.

Формула для часто­ты света, излучаемого (поглощаемого) атомом водорода (Z = 1):

Эта формула была экспериментально найдена И.Я. Бальмером еще задолго до создания квантовой механики и теоретически получена Бором

В спектре можно выделить группы линий, называемые спек­тральными серия. Каждая серия применительно к спектрам испускания соответствует переходам с различных уровней на один и тот же конечный.

В ультрафиолетовой области расположена серия Лаймана. которая образуется при переходе с верхних энергетических уровней на самый нижний, В видимой и близкой ультрафиолетовой областях спектра рас­положена серия Балъмера, которая возникает вследствие переходов с верхних энергетических уровней на второйю

В инфракрасной области расположена серия Пашека, которая возникает при переходах с верхних энергетических уровней на третий

Может показаться, что спектр атомарного водорода не ограни­чен со стороны малых частот, так как энергетические уровни по мере увеличения п становятся сколь угодно близкими. Однако на самом деле вероятность перехода между такими уровнями столь мала, что практически эти переходы не наблюдаются.

Для атомного спектрального анализа используют как спектры испускания, так и спектры поглощения (абсорбционный атомный спектральный анализ). В медицинских целях эмиссионный анализ служит в основном для определения микроэлементов в тканях организма, небольшого количества атомов металлов в консервированных продуктах с гиги­енической целью, некоторых элементов в трупных тканях для целей судебной медицины и т.п.

Всех людей, существующих в мире, можно разделить на несколько групп по уровню энергетического развития.

  • Уровень 1 . Низшая ступень. Сюда относятся люди с нарушенным и ослабленным энергетическим полем. Часто это представители человечества, имеющие хронические или временные заболевания.
  • Уровень 2 . Часть населения, принадлежащая к европеоидной расе и сознательно не отражающая свое биополе.
  • Уровень 3 . Дает возможность почувствовать не только свое биополе, но и энергетику другого человека. Часто людей, умеющих это делать, именуют экстрасенсами.
  • Уровень 4 . Часть жителей планеты, способных концентрировать энергию и затем направлять ее на живых существ (людей и животных), события, окружающие предметы и на все, что поддается воздействию. К этой группе относят колдунов, владеющих темной и светлой магией (знахари, целители, ведьмы, шаманы, ведуны). В индийских странах подобных людей называют асмерами и хилерами. Также к четвертому уровню причисляют начинающих йогов.
  • Уровень 5 . Пятую группу составляют люди, способные регенерировать и восстанавливать свой организм на клеточном уровне (кроме половых клеток). В природе не существуют людей, одаренных от рождения такой силой. Все, кто обладает энергетикой пятого и шестого уровней проделали колоссальную работу по самосовершенствованию и развитию своего биополя.
  • Уровень 6-8 . Предел осознания своего энергетического поля, которым обладают йоги, индийские волшебники высших ступеней. Такие люди способны воздействовать на судьбу человека и последующих поколений, управлять психикой и сознательно производить прочие серьезные изменения.

Специалист по эзотерике Г. Лэндис выделил более десятка факторов, которые помогают человеку развить свой энергетический уровень.

  1. Выполнение упражнений, способствующих повышению силы биополя.
  2. Ориентация на положительные эмоции вместо отрицательных. Накопление первых и устранение вторых.
  3. Самосозерцание и медитация.
  4. Постоянное общение и контактирование с людьми, относящимися к более высокому энергетическому уровню.
  5. Стремление вобрать в себя как можно больше энергии Вселенной - праны.
  6. Исполнение всех своих обязанностей.
  7. Развитие способности организма получать только полезную энергию из пищи.
  8. Научиться правильно дышать, чтобы газообмен при дыхании происходил интенсивнее.
  9. Развитие физической выносливости.
  10. Выполнение упражнений, направленных на улучшение гибкости позвоночника и суставов.
  11. Получение и сохранение биологической энергии во время сна.
  12. Избегание пустых разговоров и действий, не несущих пользу.
  13. Постоянный контакт с живыми существами (животные и птицы).
  14. Выращивание растений и овощей (разведение цветов, плодовых культур в саду и огороде)
  15. Посвящение себя сфере искусства как хобби.
  16. Вегетарианство или сведение до минимума поедания мяса и блюд из него.

Чтобы развить свое биополе, нет необходимости беспрекословно исполнять каждый пункт, названный в списке. Можно взять несколько приведенных советов, и стараться выполнять их постоянно и в полной мере. Этот вариант будет лучше, чем пытаться следовать всем рекомендациям, но в итоге относится недобросовестно к указанным предписаниям. Было бы хорошо придерживаться пунктов, обозначенных в первой половине списка, так как они наиболее плодотворно влияют на развитие энергетического уровня.

(1887-1961) для описания состояния электрона в атоме водорода. Он объединил математические выражения для колебательных процессов и уравнение де Бройля и получил следующее линейное дифференциальное однородное уравнение:

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x , y , z - координаты, m - масса покоя электрона, h - постоянная Планка, E - полная энергия электрона, E p - потенциальная энергия электрона.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

E p = −e 2 / r ,

где e - заряд электрона, r - расстояние от электрона до ядра. В этом случае уравнение Шрёдингера имеет точное решение.


Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x , y , z на сферические r , θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x ,y ,z ) = R (r ) Θ(θ) Φ(φ)

Функцию R (r ) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n , орбитальное l и магнитное m l ). Функция R (r ) зависит от n и l , функция Θ(θ) - от l и m l , функция Φ(φ) - от m l .

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь . Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского "орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n , орбитального l и магнитного m l .

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n , тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

E = −2π 2 me 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль)

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K , L , M , N ... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n −1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s , p , d , f .


Форма s -орбиталей сферическая, p -орбитали напоминают гантели, d - и f -орбитали имеют более сложную форму.

Магнитное квантовое число m l отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число m l может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р -орбитали (l = 1) могут быть ориентированы тремя способами (m l = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым ) m s , которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы. Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение ", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом m s , которое может быть равно +1/2 и −1/2.

Квантовые числа для электрона в атоме:

Энергетические уровни и подуровн и

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем . Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K , L , M , ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l . Подуровни обозначают буквами: s , p , d , f ... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

Если на схеме орбитали обозначить в виде ячеек (квадратных рамок), а электроны - в виде стрелок ( или ↓), то можно увидеть, что главное квантовые число характеризуют энергетический уровень (ЭУ), совокупность главного и орбитального квантовых чисел - энергетический подуровень (ЭПУ), совокупность главного, орбитального и магнитного квантовых чисел - атомную орбиталь , а все четыре квантовые числа - электрон.


Каждой орбитали отвечает определенная энергия. Обозначение орбитали включает номер энергетического уровня и букву, отвечающую соответствующему подуровню: 1s , 3p , 4d и т.п. Для каждого энергетического уровня, начиная со второго, возможно существование трех равных по энергии p -орбиталей, расположенных в трех взаимно перпендикулярных направлениях. На каждом энергетическом уровне, начиная с третьего, имеется пять d -орбиталей, имеющих более сложную четырехлепестковую форму. Начиная с четвертого энергетического уровня, появляются еще более сложные по форме f -орбитали; на каждом уровне их семь. Атомную орбиталь с распределенным по ней зарядом электрона нередко называют электронным облаком.

Электронная плотность

Пространственное распределение заряда электрона называется электронной плотностью. Исходя из того, что вероятность нахождения электрона в элементарном объеме dV равна |ψ| 2 dV , можно рассчитать функцию радиального распределения электронной плотности.

Если за элементарный объем принять объем шарового слоя толщиной dr на расстоянии r от ядра атома, то

dV = 4πr 2 dr ,

а функция радиального распределения вероятности нахождения электрона в атоме (вероятности электронной плотности), равна

W r = 4πr 2 |ψ| 2 dr

Она представляет собой вероятность обнаружения электрона в сферическом слое толщиной dr на определенном расстоянии слоя от ядра атома.


Для 1s -орбитали вероятность обнаружения электрона максимальна в слое, находящемся на расстоянии 52,9 нм от ядра. По мере удаления от ядра атома вероятность обнаружения электрона приближается к нулю. В случае 2s -орбитали на кривой появляются два максимума и узловая точка, где вероятность обнаружения электрона равна нулю. В общем случае для орбитали, характеризующейся квантовыми числами n и l , число узлов на графике функции радиального распределения вероятности равно (n l − 1).



Понравилась статья? Поделитесь с друзьями!