Взаимодействие алюминия и его сплавов с водородом. Тема: Образование газообразных включений в алюминиевых сплавах

Водород является единственным газом, который заметно растворяется в алюминии и его сплавах. Его растворимость изменяется пропорционально величине температуры и корню квадратному из давления. Как показано на рисунке, растворимость водорода в жидком алюминии значительно выше, чем в твердом: 0,65 и 0,034 мл/100 г, соответственно. Эти величины незначительно изменяются в зависимости от химического состава сплавов. При охлаждении и затвердевании расплавленного алюминия с содержанием водорода значительно выше, чем его растворимость в твердом состоянии, он (водород) может выделиться в молекулярной форме, что приведет к образованию первичных или вторичных пор.

Водородная пористость алюминия

Образование пузырей водорода в алюминии сильно зависит от скорости охлаждения и затвердевания, а также от наличия центров зарождения для выделения водорода, таких как захваченные внутрь расплава оксиды. Поэтому для образования пористости требуется значительное превышение содержания растворенного водорода по сравнению с растворимостью водорода в твердом алюминии. При отсутствии центров зарождения для выделения водорода требуется относительно высокая его концентрация – около 0,30 мл/100 г. Во многих промышленных сплавах пористость не обнаруживают и при таком довольно высоком содержании водорода, как 0,15 мл/100 г.

Водород в алюминиевых отливках

Расположение водорода в затвердевшем алюминии зависит от уровня его содержания в жидком алюминии и условий, при которых происходило затвердевание. Поскольку наличие водородной пористости является результатом механизмов зарождения и роста, которые контролируются диффузией, то снижение концентрации водорода и увеличение скорости затвердевания действуют подавляюще на зарождение и рост пор. По этой причине отливки, выполненные в , более подвержены дефектам, связанным с водородом, чем отливки, которые изготавливали, например .

Источники водорода в алюминии

Водород попадает в алюминий из многих источников, включая атмосферу печи, шихтовые материалы, флюсы, плавильные инструменты и реакции между расплавленным алюминием и литейной формой.

Атмосфера печи . Если плавильная печь работает на природном газе или, скажем, на мазуте, то возможно неполное сгорание топлива с образованием свободного водорода.

Шихтовые материалы . Слитки, лом и литейный возврат могут содержать оксиды, продукты коррозии, песок и другие литейные абрисы, а также смазки, которые применяются при механической обработке. Все эти загрязнители являются потенциальными источниками водорода, который образуется при восстановлении органических веществ или химическом разложении паров воды.

Флюсы. Большинство флюсов – это соли и как все соли являются гигроскопичными, то есть готовыми «с удовольствием» впитывать воду. Поэтому влажный флюс неизбежно вносит в расплав водород, который образуется при химическом разложении воды.

Плавильные инструменты. Плавильные инструменты, такие как пики, скребки и лопаты тоже могут быть источником водорода, если не поддерживать их чистыми. Оксиды и остатки флюсов на таких инструментах являются особенно «хитрыми» источниками загрязнения, так как они впитывают влагу прямо из окружающего воздуха. Печные огнеупоры, желоба и распределительные каналы, известковые и цементные растворы, ковши для отбора проб – все они являются потенциальными источниками водорода, особенно если они недостаточно высушены.

Взаимодействие между жидким алюминием и литейной формой. Если в процессе заполнения литейной формы жидкий металл течет чрезмерно турбулентно, то он может захватывать воздух в ее внутренний объем. Если воздух не сможет или не успеет выйти оттуда до начала затвердевания, то произойдет попадание водорода в металл. Причиной захвата воздуха могут также неправильно выполненные питатели литейной формы. Еще одним источником водорода являются чрезмерно влажные песчаные литейные формы.

Реакция алюминия с водородом

Считается, что алюминий, как и большинство металлов не реагирует напрямую с водородом. Обычно металлы образуют соединения, путем потери электронов, которые принимаются другими элементами. Водород тоже образует соединения, теряя электроны (или делясь электронами). Поэтому обычно атомы водорода не принимают электроны, которые отдают металлы для образования соединений. Только некоторые очень реактивные металлы, такие как натрий, калий, кальций и магний могут «принуждать» атомы водорода принять их электроны с образованием твердых ионных соединений, которые называют гидридами этих металлов.

Для прямого синтеза гидрида алюминия из водорода и алюминия требуется сумасшедшее давление около 2000000000 атмосфер и температура выше 800 К. Между тем такое соединение как гидрид алюминия существует. Гидрид алюминия — это нестабильное соединение, которое легко разлагается при температуре выше 100 °С. Его получают не прямым путем, а в результате реакций других соединений.

АЛЮМИНИЙ

Алюминий – элемент с порядковым номером 13, относительной атомной массой – 26,98154. Находится в III периоде, III группе, главной подгруппе. Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 1 3d 0 . Устойчивая степень окисления алюминия – «+3». Образующийся при этом катион обладает оболочкой благородного газа, что способствует его устойчивости, но отношение заряда к радиусу, то есть концентрация заряда, достаточно высоки, что повышает энергию катиона. Эта особенность приводит к тому, что алюминий наряду с ионными соединениями образует целый ряд ковалентных соединений, а его катион подвергается в растворе значительному гидролизу.

Валентность I алюминий может проявлять только при температуре выше 1500 о С. Известны Al 2 O и AlCl.

По физическим свойствам алюминий – типичный металл, с высокой тепло- и электропроводностью, уступающий только серебру и меди. Потенциал ионизации алюминия не очень высок, поэтому от него можно было бы ожидать большой химической активности, но она значительно снижена из-за того, что на воздухе металл пассивируется за счет образования на его поверхности прочной оксидной пленки. Если металл активизировать: а) механически удалить пленку, б) амальгамировать (привести во взаимодействие с ртутью), в) использовать порошок, то такой металл становится настолько реакционноспособным, что взаимодействует даже с влагой и кислородом воздуха, разрушаясь при этом в соответствии с процессом:

4(Al,Hg) +3O 2 + 6H 2 O = 4Al(OH) 3 + (Hg)

Взаимодействие с простыми веществами.

1. Порошкообразный алюминий при сильном нагревании реагирует с кислородом. Эти условия нужны из-за пассивации, а сама реакция образования оксида алюминия сильно экзотермична – выделяется 1676 кДж/моль теплоты.

2. С хлором и бромом реагирует при стандартных условиях, способен даже загораться в их среде. Не реагирует только с фтором, т.к. фторид алюминия, подобно оксиду, образует на поверхности металла защитную солевую пленку. С иодом реагирует при нагревании и в присутствии воды как катализатора.

3. С серой реагирует при сплавлении, давая сульфид алюминия состава Al 2 S 3 .

4. C фосфором также реагирует при нагревании с образованием фосфида: AlP.

5. Непосредственно с водородом алюминий не взаимодействует.

6. С азотом взаимодействует при 800 о С, давая нитрид алюминия (AlN). Следует сказать, что горение алюминия на воздухе происходит примерно при таких температурах, поэтому продуктами горения (с учетом состава воздуха) являются одновременно и оксид, и нитрид.

7. С углеродом алюминий взаимодействует при еще более высокой температуре: 2000 о С. Карбид алюминия состава Al 4 C 3 относится к метанидам, в его составе нет связей С-С, и при гидролизе выделяется метан: Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

Взаимодействие со сложными веществами

1. С водой активированный (лишенный защитной пленки) алюминий активно взаимодействует с выделением водорода: 2Al (акт.) + 6H 2 O = 2Al(OH) 3 + 3H 2 Гидроксид алюминия получается в виде белого рыхлого порошка, отсутствие пленки не мешает прохождению реакции до конца.

2. Взаимодействие с кислотами: а) С кислотами-неокислителями алюминий активно взаимодействует в соответствии с уравнением: 2Al + 6H 3 O + + 6H 2 O = 2 3+ + 3H 2 ,

б) С кислотами-окислителями взаимодействие происходит со следующими особенностями. Концентрированные азотная и серная кислоты, а также очень разбавленная азотная кислота пассивируют алюминий (быстрое окисление поверхности приводит к образованию оксидной пленки) на холоду. При нагревании пленка нарушается, и реакция проходит, но из концентрированных кислот при нагревании выделяются только продукты их минимального восстановления: 2Al + 6H 2 SO 4 (конц) = Al 2 (SO 4) 3 + 3SO 2 6H 2 O Al + 6HNO 3 (конц) = Al(NO 3) 3 + 3NO 2 + 3H 2 O С умеренно разбавленной азотной кислотой в зависимости от условий реакции можно получить NO, N 2 O, N 2 , NH 4 + .

3. Взаимодействие со щелочами. Алюминий является амфотерным элементом (по химическим свойствам), т.к. обладает достаточно большой для металлов электроотрицательностью – 1,61. Поэтому он достаточно легко растворяется в растворах щелочей с образованием гидроксокомплексов и водорода. Состав гидроксокомплекса зависит от соотношения реагентов: 2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 2Al + 6NaOH + 6H 2 O = 2Na 3 + 3H 2 Соотношение алюминия и водорода определяется электронным балансом происходящей между ними окислительно-восстановительной реакции и от соотношения реагентов не зависит.

4. Низкий потенциал ионизации и большое сродство к кислороду (большая устойчивость оксида) приводят к тому, что алюминий активно взаимодействует с оксидами многих металлов, восстанавливая их. Реакции проходят при начальном нагревании с дальнейшим выделением теплоты, так что температура повышается до 1200 о – 3000 о С. Смесь 75% алюминиевого порошка и 25% (по массе) Fe 3 O 4 называют «термитом». Раньше реакцию горения этой смеси использовали для сварки рельсов. Восстановление металлов из оксидов при помощи алюминия называется алюмотермией и используется в промышленности как способ получения таких металлов как марганец, хром, ванадий, вольфрам, ферросплавы.

5. С растворами солей алюминий взаимодействует двумя разными способами. 1. Если в результате гидролиза раствор соли имеет кислую или щелочную среду, происходит выделение водорода (с кислыми растворами реакция идет только при значительном нагревании, т.к. защитная оксидная пленка лучше растворяется в щелочах, чем в кислотах). 2Al + 6KHSO 4 + (H 2 O) = Al 2 (SO 4) 3 + 3K 2 SO 4 +3H 2 2Al + 2K 2 CO 3 + 8H 2 O = 2K + 2KHCO 3 + 3H 2 . 2. Алюминий может вытеснять из состава соли металлы, стоящие в ряду напряжения правее, чем он, т.е. фактически будет окисляться катионами этих металлов. Из-за оксидной пленки эта реакция проходит не всегда. Например, хлорид-анионы способны нарушать пленку, и реакция 2Al + 3FeCl 2 = 2AlCl 3 + 3Fe проходит, а аналогичная реакция с сульфатами при комнатной температуре не пойдет. С активированным алюминием любое взаимодействие, не противоречащее общему правилу, пойдет.

Соединения алюминия.

1. Оксид (Al 2 O 3). Известен в виде нескольких модификаций, большинство из которых очень прочны и химически инертны. Модификация α-Al 2 O 3 встречается в природе в виде минерала корунд. В кристаллической решетке этого соединения катионы алюминия иногда частично замещены на катионы других металлов, что придает минералу окраску. Примесь Cr(III) дает красный цвет, такой корунд – это уже драгоценный камень рубин. Примесь Ti(III) и Fe(III) дает сапфир синего цвета. Химически активна аморфная модификация. Оксид алюминия – типичный амфотерный оксид, реагирующий как с кислотами и кислотными оксидами, так и со щелочами и основными оксидами, причем со щелочами предпочтительнее. Продукты реакции в растворе и в твердой фазе при сплавлении отличаются: Na 2 O + Al 2 O 3 = 2NaAlO 2 (сплавление) – метаалюминат натрия, 6NaOH + Al 2 O 3 = 2Na 3 AlO 3 + 3H 2 O (сплавление) – ортоалюминат натрия, Al 2 O 3 + 3CrO 3 = Al 2 (CrO 4) 3 (сплавление) – хромат алюминия. Кроме оксидов и твердых щелочей алюминий при сплавлении реагирует с солями, образованными летучими кислотными оксидами, вытесняя их из состава соли: K 2 CO 3 + Al 2 O 3 = 2KAlO 2 + CO 2 Реакции в растворе: Al 2 O 3 + 6HCl = 2 3+ + 6Cl 1- + 3H 2 O Al 2 O 3 +2 NaOH + 3H 2 O =2 Na – тетрагидроксоалюминат натрия. Тетрагидроксоалюминат-анион на самом деле является тетрагидроксодиакваанионом 1- , т.к. координационное число 6 для алюминия предпочтительнее. При избытке щелочи образуется гексагидроксоалюминат: Al 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 . Кроме кислот и щелочей можно ожидать реакций с кислыми солями: 6KHSO 4 + Al 2 O 3 = 3K 2 SO 4 + Al 2 (SO 4) 3 + 3H 2 O.



3. Гидроксиды алюминия . Известно два гидроксида алюминия – метагидроксид –AlO(OH) и ортогидроксид – Al(OH) 3 . Оба они в воде не растворяются, но также являются амфотерными, поэтому растворяются в растворах кислот и щелочей, а также солей, имеющих кислую или щелочную среду в результате гидролиза. При сплавлении гидроксиды реагируют аналогично оксиду. Как все нерастворимые основания гидроксиды алюминия при нагревании разлагаются: 2Al(OH) 3 = Al 2 O 3 + 3H 2 O. Растворяясь в щелочных растворах, гидроксиды алюминия не растворяются в водном аммиаке, поэтому их можно осадить аммиаком из растворимой соли: Al(NO 3) 3 + 3NH 3 + 2H 2 O = AlO(OH)↓ + 3NH 4 NO 3 , по этой реакции получается именно метагидроксид. Осадить гидроксид действием щелочей сложно, т.к. получившийся осадок легко растворяется, и суммарная реакция имеет вид: AlCl 3 +4 NaOH = Na + 3NaCl

4. Соли алюминия. Почти все соли алюминия хорошо растворимы в воде. Нерастворимы фосфат AlPO 4 и фторид AlF 3 . Т.к. катион алюминия имеет большую концентрацию заряда, его аквакомплекс приобретает свойства катионной кислоты: 3+ + H 2 O = H 3 O + + 2+ , т.е. соли алюминия подвергаются сильному гидролизу по катиону. В случае солей слабых кислот из-за взаимного усиления гидролиза по катиону и аниону гидролиз становится необратимым. В растворе полностью разлагаются водой или не могут быть получены по реакции обмена карбонат, сульфит, сульфид и силикат алюминия: Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S 2Al(NO 3) 3 + 3K 2 CO 3 + 3H 2 O = 2Al(OH) 3 ↓ + 3CO 2 + 6KNO 3 . Для некоторых солей гидролиз становится необратимым при нагревании. Влажный ацетат алюминия при нагревании разлагается в соответствии с уравнением: 2Al(OOCCH 3) 3 + 3H 2 O = Al 2 O 3 + 6CH 3 COOH В случае галогенидов алюминия разложению соли способствует уменьшение растворимости газообразных галогеноводородов при нагревании: AlCl 3 + 3H 2 O = Al(OH) 3 ↓ + 3HCl. Из галогенидов алюминия только фторид является ионным соединением, остальные галогениды – ковалентные соединения, их температуры плавления существенно ниже, чем у фторида, хлорид алюминия способен возгоняться. При очень высокой температуре в парах находятся одиночные молекулы галогенидов алюминия, имеющие плоское треугольное строение из-за sp 2 -гибридизации атомных орбиталей центрального атома. Основное состояние этих соединений в парах и в некоторых органических растворителях – это димеры, например, Al 2 Cl 6 . Галогениды алюминия являются сильными кислотами Льюиса, т.к. имеют вакантную атомную орбиталь. Растворение в воде, поэтому происходит с выделением большого количества теплоты. Интересным классом соединений алюминия (как и других трехвалентных металлов) являются квасцы – 12-водные двойные сульфаты M I M III (SO 4) 2 , которые при растворении как все двойные соли дают смесь соответствующих катионов и анионов.

5. Комплексные соединения. Рассмотрим гидроксокомплексы алюминия. Это соли, в которых комплексная частица является анионом. Все соли растворимые. Разрушаются при взаимодействии с кислотами. При этом сильные кислоты растворяют образующийся ортогидроксид, а слабые или соответствующие им кислотные оксиды (H 2 S, CO 2 , SO 2) его осаждают: K +4HCl = KCl + AlCl 3 + 4H 2 O K + CO 2 = Al(OH) 3 ↓ + KHCO 3

При прокаливании гидроксоалюминаты превращаются в орто - или метаалюминаты, теряя воду.

Железо

Элемент с порядковым номером 26, с относительной атомной массой 55,847. Относится к 3d-семейству элементов, имеет электронную конфигурацию: 3d 6 4s 2 и в периодической системе находится в IV периоде, VIII группе, побочной подгруппе. В соединениях железо преимущественно проявляет степени окисления +2 и +3. Ион Fe 3+ имеет наполовину заполненную d-электронную оболочку, 3d 5 , что придает ему дополнительную устойчивость. Значительно труднее достигаются степени окисления +4, +6, +8.

По физическим свойствам железо – серебристо-белый, блестящий, относительно мягкий, ковкий, легко намагничивающийся и размагничивающийся металл. Температура плавления 1539 о С. Имеет несколько аллотропных модификаций, отличающихся типом кристаллической решетки.

Свойства простого вещества.

1. При горении на воздухе образует смешанный оксид Fe 3 O 4 , а при взаимодействии с чистым кислородом – Fe 2 O 3 . Порошкообразное железо пирофорно – самовоспламеняется на воздухе.

2. Фтор, хлор и бром легко реагируют с железом, окисляя его до Fe 3+ . С иодом образуется FeJ 2 , так как трехвалентный катион железа окисляет иодид-анион, в связи с чем, соединения FeJ 3 не существует.

3. По аналогичной причине не существует соединения Fe 2 S 3 , а взаимодействие железа и серы при температуре плавления серы приводит к соединению FeS. При избытке серы получается пирит – дисульфид железа (II) – FeS 2 . Образуются также нестехиометрические соединения.

4. С остальными неметаллами железо реагирует при сильном нагревании, образуя твердые растворы или металлоподобные соединения. Можно привести реакцию, идущую при 500 о С: 3Fe + C = Fe 3 C. Такое соединение железа и углерода называется цементит.

5. Со многими металлами железо образует сплавы.

6. На воздухе при комнатной температуре железо покрыто оксидной пленкой, поэтому с водой не взаимодействует. Взаимодействие с перегретым паром дает следующие продукты: 3Fe + 4H 2 O (пар) = Fe 3 O 4 + 4H 2 . В присутствии кислорода железо взаимодействует даже с влагой воздуха: 4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3 . Приведенное уравнение отражает процесс ржавления, которому подвергается в год до 10% металлических изделий.

7. Так как железо стоит в ряду напряжения до водорода, оно легко реагирует с кислотами-неокислителями, но окисляется при этом только до Fe 2+ .

8. Концентрированные азотная и серная кислоты пассивируют железо, но при нагревании реакция происходит. Разбавленная азотная кислота реагирует и при комнатной температуре. Со всеми кислотами-окислителями железо дает соли железа (III) (по некоторым сведениям, с разбавленной азотной кислотой возможно образование нитрата железа (II)), а восстанавливает HNO 3 (разб.) до NO, N 2 O, N 2 , NH 4 + в зависимости от условий, а HNO 3 (конц.) – до NO 2 из-за нагревания, которое необходимо для прохождения реакции.

9. Железо способно реагировать с концентрированными (50%) щелочами при нагревании: Fe + 2KOH + 2H 2 O = K 2 + H 2

10. Реагируя с растворами солей менее активных металлов, железо вытеняет эти металлы из состава соли, превращаясь в двухвалентный катион: CuCl 2 + Fe = FeCl 2 + Cu.

Свойства соединений железа.

Fe 2+ Отношение заряда к радиусу данного катиона близко к таковому у Mg 2+ , поэтому химическое поведение оксида, гидроксида и солей двухвалентного железа подобно поведению соответствующих соединений магния. В водном растворе катион двухвалентного железа образует аквакомплекс 2+ бледно-зеленого цвета. Этот катион легко окисляется даже прямо в растворе кислородом воздуха. В растворе FeCl 2 содержатся комплексные частицы 0 . Концентрация заряда такого катиона невелика, поэтому гидролиз солей умеренный.

1. FeO - основной оксид, черного цвета, в воде не растворяется. Легко растворяется в кислотах. При нагревании свыше 500 0 С диспропорционирует: 4FeO = Fe + Fe 3 O 4 . Он может быть получен при осторожном прокаливании соответствующих гидроксида, карбоната и оксалата, тогда как термическое разложение других солей Fe 2+ приводит к образованию оксида трехвалентного железа: FeC 2 O 4 = FeO + CO + CO 2 ­ , но 2 FeSO 4 = Fe 2 O 3 + SO 2 + SO 3 4Fe(NO 3) 2 = 2Fe 2 O 3 + 8NO 2 + O 2 Сам оксид железа (II) может выступать как окислитель, например, при нагревании идет реакция: 3FeO + 2NH 3 = 3Fe + N 2 +3H 2 O

2. Fe(OH) 2 – гидроксид железа (II) – нерастворимое основание. Реагирует с кислотами. С кислотами-окислителями происходит одновременно кислотно-основное взаимодействие и окисление до трехвалентного железа: 2Fe(OH) 2 + 4H 2 SO 4 (конц) = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O. Может быть получен по обменной реакции из растворимой соли. Это соединение белого цвета, которое на воздухе сначала зеленеет из-за взаимодействия с влагой воздуха, а затем буреет из-за окисления кислородом воздуха: 4Fe(OH) 2 + 2H 2 O + O 2 = 4Fe(OH) 3 .

3. Соли. Как уже говорилось, большинство солей Fe(II) медленно окисляются на воздухе или в растворе. Наиболее устойчивой к окислению является соль Мора – двойной сульфат железа (II) и аммония: (NH 4) 2 Fe(SO 4) 2 . 6H 2 O. Катион Fe 2+ легко окисляется до Fe 3+ , поэтому большинство окислителей, в частности, кислоты-окислители окисляют соли двухвалентного железа. При обжиге сульфида и дисульфида железа получается оксид железа (III) и оксид серы (IV): 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 Сульфид железа (II) растворяется также в сильных кислотах: FeS + 2HCl = FeCl 2 + 2H 2 S Карбонат железа (II) нерастворим, тогда как гидрокарбонат в воде растворяется.

Fe 3+ По отношению заряда к радиусу данный катион соответствует катиону алюминия, поэтому свойства соединений катиона железа (III) аналогичны соответствующим соединениям алюминия.

Fe 2 O 3 – гематит, амфотерный оксид, у которого преобладают основные свойства. Амфотерность проявляется в возможности сплавления с твердыми щелочами и карбонатами щелочных металлов: Fe 2 O 3 + 2NaOH = H 2 O + 2NaFeO 2 – желтого или красного цвета, Fe 2 O 3 + Na 2 CO 3 = 2NaFeO 2 + CO 2 . Ферраты (II) разлагаются водой с выделением Fe 2 O 3 . nH 2 O.

Fe 3 O 4 - магнетит, вещество черного цвета, которое можно рассматривать либо как смешанный оксид – FeO . Fe 2 O 3 , либо как оксометаферрат (III) железа (II): Fe(FeO 2) 2 . При взаимодействии с кислотами дает смесь солей: Fe 3 O 4 + 8HCl = FeCl 2 + 2FeCl 3 + 4H 2 O.

Fe(OH) 3 или FeO(OH) – красно-бурый студенистый осадок, амфотерный гидроксид. Кроме взаимодействий с кислотами реагирует с горячим концентрированным раствором щелочи и сплавляется с твердыми щелочами и карбонатами: Fe(OH) 3 + 3KOH = K 3 .

Соли. Большинство солей трехвалентного железа растворимо. Так же как соли алюминия, они подвергаются сильному гидролизу по катиону, который в присутствии анионов слабых и нестойких или нерастворимых кислот может стать необратимым: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 + 6NaCl. При кипячении раствора хлорида железа (III) гидролиз также можно сделать необратимым, т.к. растворимость хлороводорода как любого газа при нагревании уменьшается и он уходит из сферы реакции: FeCl 3 + 3H 2 O = Fe(OH) 3 + 3HCl (при нагревании).

Окислительная способность данного катиона очень высока, особенно, по отношению к превращению в катион Fe 2+ : Fe 3+ + ē = Fe 2+ φ o =0,77в. В результате чего:

а) растворы солей трехвалентного железа окисляют все металлы вплоть до меди: 2Fe(NO 3) 3 + Cu = 2Fe(NO 3) 2 + Cu(NO 3) 2 ,

б) обменные реакции с солями, содержащими легко окисляемые анионы, проходят одновременно с их окислением: 2FeCl 3 + 2KJ = FeCl 2 + J 2 + 2KCl 2FeCl 3 + 3Na 2 S = 2FeS + S + 6NaCl

Как и другие трехвалентные катионы, железо (III) способно к образованию квасцов – двойных сульфатов с катионами щелочных металлов или аммония, например: NH 4 Fe(SO 4) 2 . 12H 2 O.

Комплексные соединения. Оба катиона железа склонны к образованию анионных комплексов, особенно железо (III). FeCl 3 + KCl = K, FeCl 3 + Cl 2 = Cl + - . Последняя реакция отражает действие хлорида железа (III) как катализатора электрофильного хлорирования. Интерес представляют цианидные комплексы: 6KCN + FeSO 4 = K 4 – гексацианоферрат (II) калия, желтая кровяная соль. 2K 4 + Cl 2 = 2K 3 + 2KCl – гексацианоферрат (III) калия, красная кровяная соль. Комплекс двухвалентного железа дает с солью трехвалентного железа синий осадок или раствор в зависимости от соотношения реагентов. Такая же реакция происходит между красной кровяной солью и любой солью двухвалентного железа. В первом случае осадок называли берлинской лазурью, во втором – турнбулевой синью. Позже выяснилось, что, по крайней мере, растворы имеют одинаковый состав: K – гексацианоферрат железа (II,III) калия. Описанные реакции являются качественными на наличие в растворе соответствующих катионов железа. Качественной реакцией на наличие катиона трехвалентного железа является появленме кроваво-красной окраски при взаимодействии с тиоцианатом (роданидом) калия:2FeCl 3 + 6KCNS = 6KCl + Fe.

Fe +6 . Степень окисления +6 для железа малоустойчива. Удается получить только анион FeO 4 2- , который существует только при pH>7-9, но при этом является сильным окислителем.

Fe 2 O 3 + 4KOH + 3KNO 3 = 2K 2 FeO 4 + 3KNO 2 + 2H 2 O

Fe (опилки) + H 2 O + KOH + KNO 3 = K 2 FeO 4 + KNO 2 + H 2

2Fe(OH) 3 + 3Cl 2 + 10KOH = 2K 2 FeO 4 + 6KCl + 6H 2 O

Fe 2 O 3 + KClO 3 + 4KOH = 2K 2 FeO 4 + KCl + 2H 2 O

4K 2 FeO 4 + 6H 2 O = 4FeO(OH)↓ + 8KOH + 3O 2

4BaFeO 4 (нагревание) = 4BaO + 2Fe 2 O 3 + 3O 2

2K 2 FeO 4 + 2CrCl 3 + 2HCl = FeCl 3 + K 2 Cr 2 O 7 + 2KCl + H 2 O

Получение железа в промышленности:

А) доменный процесс: Fe 2 O 3 + C = 2FeO + CO

FeO + C = Fe + CO

FeO + CO = Fe + CO 2

Б) алюмотермия: Fe 2 O 3 + Al = Al 2 O 3 + Fe

ХРОМ – элемент с порядковым номером 24, с относительной атомной массой 51,996. Относится к 3d-семейству элементов, имеет электронную конфигурацию 3d 5 4s 1 и в периодической системе находится в IV периоде, VI группе, побочной подгруппе. Возможные степени окисления: +1, +2, +3, +4, +5, +6. Из них наиболее устойчивыми являются +2, +3, +6, а минимальной энергией обладает +3.

По физическим свойствам хром – серовато-белый, блестящий, твердый металл с температурой плавления 1890 о С. Прочность его кристаллической решетки обусловлена наличием пяти неспаренных d-электронов, способных к частичному ковалентному связыванию.

Химические свойства простого вещества.

При низких температурах хром инертен из-за наличия оксидной пленки, не взаимодействует с водой и воздухом.

1. С кислородом взаимодействует при температурах выше 600 о С. При этом образуется оксид хрома (III) – Cr 2 O 3 .

2. Взаимодействие с галогенами происходит по-разному: Cr + 2F 2 = CrF 4 (при комнатной температуре), 2Cr + 3Cl 2 (Br 2) = 2CrCl 3 (Br 3), Cr + J 2 = CrJ 2 (при значительном нагревании). Следует сказать, что иодид хрома (III) может существовать и получается по обменной реакции в виде кристаллогидрата CrJ 3 . 9H 2 O, но его термическая устойчивость невелика, и при нагревании он разлагается на CrJ 2 и J 2 .

3. При температуре выше 120 о С хром взаимодействует с расплавленной серой, давая сульфид хрома (II) – CrS (черного цвета).

4. При температурах выше 1000 о С хром реагирует с азотом и углеродом, давая нестехиометрические, химически инертные соединения. Среди них можно отметить карбид с примерным составом CrC, который по твердости приближается к алмазу.

5. С водородом хром не реагирует.

6. Реакция с водяным паром проходит следующим образом: 2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

7. Реакция с кислотами-неокислителями происходит достаточно легко, при этом образуется аква-комплекс 2+ небесно-голубого цвета, который устойчив только в отсутствие воздуха или в атмосфере водорода. В присутствии кислорода реакция идет иначе: 4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O. Разбавленные кислоты, насыщенные кислородом, даже пассивируют хром за счет образования на поверхности прочной оксидной пленки.

8. Кислоты- окислители: азотная кислота любой концентрации, серная концентрированная, хлорная кислота пассивируют хром так, что после обработки поверхности этими кислотами он уже не реагирует и с другими кислотами. Пассивация снимается при нагревании. При этом получаются соли хрома (III) и диоксиды серы или азота (из хлорной кислоты – хлорид). Пассивация за счет образования солевой пленки происходит при взаимодействии хрома с фосфорной кислотой.

9. Непосредственно со щелочью хром не реагирует, но вступает в реакцию со щелочными расплавами с добавлением окислителей: 2Cr + 2Na 2 CO 3 (ж) + 3O 2 = 2Na 2 CrO 4 + 2CO 2

10. Хром способен реагировать с растворами солей, вытесняя менее активные металлы (стоящие правее него в ряду напряжения) из состава соли. Сам хром при этом превращается в катион Cr 2+ .

Вариант 1

1.Напишите уравнения реакций алюминия: а) с хлором; б) с разбавленной серной кислотой; в) с углём; г) с раствором хлорида меди (II). Уравнение реакции 4 запишите в молекулярной и ионной формах.

2.Сравните физические свойства натрия, магния и алюминия.

3. Барий получают алюминотермическим восстановлением оксида бария. Рассчитайте массу бария, который образуется при взаимодействии 600 г оксидного концентрата (массовая доля BaO в нем 92% г.)

Вариант 2

1.Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

Уравнение реакции 3 запишите в молекулярной и ионной формах.

2.Почему алюминиевая посуда не разрушается в кипящей воде и практически не подвергается атмосферной коррозии?
Алюминий с водой не реагирует, даже при нагревании, поскольку на его поверхности образуется защитная оксидная пленка, которая предохраняет его от коррозии.

3. Смесь массой 6 г, состоящую из меди и алюминия, обработали избытком соляной кислоты. При этом получили 2,8 л водорода (н.у.). вычислите массовую долю каждого металла в смеси.

Вариант 3

1.Напишите уравнения реакций алюминия: а) с серой; б) с раствором гидроксида натрия; в) с оксидом хрома (III); г) с раствором нитрата ртути (II). Уравнение реакции 4 запишите в молекулярной и ионной формах.

2.Сравните строение атомов натрия, магния и алюминия. Отметьте черты сходства и различия.

3.Вычислите массу соли, которая образовалась при взаимодействии 2,7 г алюминия с бромом массой 40 г.

Вариант 4

1.Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

Уравнение реакции 4 запишите в молекулярной и ионной формах.

2.Как согласовать представление о высокой химической активности алюминия с наблюдаемым на повседневном опыте поведением алюминиевых изделий?
Алюминий очень активный металл, поэтому быстро покрывается защитной оксидной пленкой, которая предохраняет его и изделия из него от коррозии.

3.Вычислите массу технического алюминия (массовая доля алюминия 98,4%), который потребуется для алюминотермического получения ванадия массой 15,3 кг из оксида ванадия (V).

«Водород генерируется только при необходимости, так что вы можете произвести его ровно столько, сколько нужно», - пояснил Вудалл на университетском симпозиуме, где описывались детали открытия. Данная технология может, например, применяться совместно с небольшими двигателями внутреннего сгорания в различных применениях – портативных аварийных генераторах, газонокосилках и пилах. Теоретически, она может быть использована и на легковых автомобилях и грузовиках.

Водород выделяется самопроизвольно, когда вода добавляется к шарикам, выполненным из сплава алюминия и галлия. «При этом алюминий в твердом сплаве реагирует с водой, отрывая от ее молекул кислород», - комментирует Вудалл. Соответственно, оставшийся водород выделяется в окружающее пространство.

Наличие галлия является критичным для прохождения реакции, так как он препятствует формированию пленки оксида на поверхности алюминия при его окислении. Такая пленка обычно предотвращает дальнейшее окисления алюминия, выступая в качестве барьера. Если же ее формирование окажется нарушенным, реакция будет идти до тех пор, пока не израсходуется весь алюминий.

Вудалл открыл данный процесс с жидким сплавом алюминия-галлия в 1967 году, когда он работал в полупроводниковой промышленности. «Я очищал тигель, содержавший сплав галлия и алюминия, - рассказывает он, - Когда я добавил туда воду, произошел сильный хлопок. После этого я удалился в лабораторию и в течение нескольких часов изучал, что же именно произошло».

«Необходимым компонентом является галлий, так как он плавится при низкой температуре и растворяет алюминий, что делает возможным реакцию последнего с водой. – поясняет Вудалл. – Это было неожиданным открытием, так как хорошо известно, что твердый алюминий не взаимодействует с водой».

Конечными продуктами реакции являются галлий и оксид алюминия. Сжигание же водорода приводит к образованию воды. «Таким образом, никаких токсичных выбросов не получается, - говорит Вудалл, - Важно отметить и то, что галлий не участвует в реакции, так что его можно утилизировать и использовать вновь. Это важно, так как сейчас этот металл намного дороже алюминия. Впрочем, если данный процесс начнет широко использоваться, то добывающая промышленность сможет выпускать более дешевый низкосортный галлий. Для сравнения, весь используемый сейчас галлий имеет высокую степень очистки и используется, главным образом, в полупроводниковой промышленности».

Вудалл говорит, что, так как водород может использоваться вместо бензина в двигателях внутреннего сгорания, возможно применение методики на автомобильном транспорте. Однако для того, чтобы технология смогла конкурировать с бензиновой, необходимо снизить стоимость восстановления оксида алюминия. «Сейчас стоимость одного фунта алюминия превышает $1, и поэтому вы не сможете получить количество водорода, эквивалентное бензину по цене $3 за галлон», - поясняет Вудалл.

Впрочем, стоимость алюминия может быть снижения, если он будет получаться из оксида с помощью электролиза, а электроэнергия для него будет идти с или . В этом случае алюминий может производиться прямо на месте, и отпадает необходимость в передаче электроэнергии, что снижает общие затраты. Кроме того, такие системы могут располагаться в удаленных районах, что особенно важно при постройке атомных электростанций. Данный подход, по мнению Вудалла, позволит уменьшить использование бензина, снизить загрязнение и зависимость от импорта нефти.

«Мы называем это водородной энергетикой на основе алюминия, - говорит Вудалл, - Причем не будет никаких сложностей, чтобы переделать двигатели внутреннего сгорания на работу от водорода. Все, что нужно – заменить их топливный инжектор на водородный».

Также система может применяться и для питания топливных ячеек. В этом случае она уже может конкурировать с бензиновыми двигателями – даже при сегодняшней высокой стоимости алюминия. «КПД систем на топливных элементах составляет 75%, тогда как двигателя внутреннего сгорания – 25%, - говорит Вудалл, - Таким образом, как только технология будет широко доступной, наша методика извлечения водорода станет экономически оправданной».

Ученые подчеркивают ценность алюминия для генерации энергии. «Большинство людей не догадывается, насколько много энергии заключено в нем, - поясняет Вудалл, - Каждый фунт (450 граммов) металла может дать 2 кВт*часа при сжигании выделившегося водорода, и еще столько же энергии в виде тепла. Таким образом, средний автомобиль с баком, заполненным шариками из сплава алюминия (около 150 кг) сможет проехать порядка 600 км, и это будет стоить $60 (при этом предполагается, что оксид алюминия затем будет утилизирован). Для сравнения, если я залью в бак бензин, то буду получать с каждого фунта 6 кВт*часов, что в 2.5 раза больше энергии от фунта алюминия. Другими словами, мне нужно будет в 2.5 раза больше алюминия, чтобы получить такое же количество энергии. Однако важно то, что я полностью исключаю бензин, и применяю вместо него дешевое вещество, доступное в США».


Самая крутая фишка для фантастики и в принципе ожидаемая нами всеми в будущем - это заливаешь в бак автомобиля воду и поехал. Сейчас водород уже достаточно давно рассматривается и кое-где используется в качестве экологически чистого вида топлива. Но более широкому использованию водородного топлива мешает целый ряд неразрешенных на сегодняшний день проблем, главными из которых являются хранение и транспортировка.

И вот тут его непосредственное вырабатывание в автомобиле прямо из воды было бы крутейшим вариантом.

Похоже мы все ближе и ближе к этому...

Группа исследователей из американской Армейской научно-исследовательской лаборатории, проводя эксперименты на Абердинском испытательном полигоне близ Мериленда, сделала случайное открытие. Пролив воду на брусок особого алюминиевого сплава, состав которого держится пока в секрете, исследователи заметили мгновенно начавшийся процесс бурного выделения водорода.



Из школьного курса химии, если кто его еще помнит, водород является побочным продуктом реакции между водой и алюминием. Однако, данная реакция обычно протекает лишь при достаточно высокой температуре или в присутствии специальных катализаторов. Да и тогда она идет достаточно "неторопливо", на заполнение бака водородного автомобиля потребуется около 50 часов, а энергетическая эффективность такого метода получения водорода не превышает 50 процентов.

Все вышесказанное не имеет отношения к реакции, в которой принимает участие новый сплав алюминия. "Эффективность этой реакции вплотную приближается к 100 процентам, а сама реакция "разгоняется" до максимальной производительности менее, чем за три минуты" - рассказывает Скотт Грендаль (Scott Grendahl), руководитель научной группы.



Использование системы, вырабатывающей водород по мере необходимости, решает массу имеющихся проблем. Воду и алюминиевый сплав легко транспортировать из одного места в другое, оба этих вещества сами по себе инертны и стабильны. Во-вторых, для начала реакции не требуется никакого катализатора, ни первоначального толчка, реакция начинает идти сразу же, как вода входит в контакт со сплавом.

Все вышесказанное еще не означает, что исследователи обнаружили панацею в области водородного топлива. В этом деле существует еще целый ряд вопросов, подлежащих выяснению или уточнению. Первым вопросом является то, будет ли работать такая схема получения водорода вне лаборатории, ведь существует множество примеров, когда экспериментальные технологии отлично работают в лабораторных условиях, но терпят полную неудачу при полевых испытаниях. Вторым вопросом является вопрос сложности и стоимости производства алюминиевого сплава, стоимость утилизации продуктов реакции, которые станут факторами, определяющим экономическую целесообразность нового способа получения водорода.

И в заключение следует отметить, что на выяснение упомянутых выше вопросов, скорее всего, уйдет не так уж и много времени. И только после этого можно будет сделать выводы о дальнейшей жизнеспособности нового метода получения водородного топлива.

П.С . Делориан на первой картинке для привлечения внимания:-)

источники



Понравилась статья? Поделитесь с друзьями!